«a2» 2013.11.11 --Copyright 0 Daniele Giacomini -- appunti2@gmail.com http://informaticalibera.net

nanoBase 1997 user manual

DOS XBaSE ...ttt 1134
DBFfiles ... 1134
Indexfilescco i 1135
Relations ... 1136

COMPOSItION ... e e 1137

HOWtOUSENB ... e 1139

Status line ... s 1140

Thedotline i e 1140

Themenusystemo i 1140
MenuFileo 1141
MenuEdit 1144
MenuReport ... 1145
MenUHTE ... e 1148
MENUMACIO ..\ e 1148
MenulInfo 1149
MenuDOCo 1149

Thetexteditor DOC()oovviviiiii i 1149

The helptextfile s 1150

MaCIO .. s 1150
Macro statements i 1151
Variable declarationcciiiiitiin 1152
Macro structure ... 1152
Macro Commentsc.ooiiiiii 1153
Macro longlinessplit 1153
The macrorecorderooiiiiiieeeenninnnn 1153

Data types ...t 1154
Characterco i e, 1154
MEMO .. 1155
Date .. 1155
NUMENIC ..o e 1156
Logical ... 1157
NI 1157
ATAY s 1158
CodeblocK ...t 1159

OPEIAtOrS ottt 1160

Delimiters ...t e 1161

Code bloCKS ...t 1162

Standard functions i 1162
AADD() et 1162
ABS() ot 1162
ACLONE() .ottt 1162
ACOPY() .« 1163
ADEL() .« 1163
ABEVAL() o 1163
AFILL() oo 1163
AINS() e 1164
ALERT() oot 1164
ALIAS() .ot 1164
ALLTRIMQ) © oot 1164
ARRAY() it 1165
ASC() ot 1165
ASCAN() « e e 1165
ASIZE() © oo 1165

«

ATO oo 1166
ATAILO e 1166
BINZI() .o 1166
BINZL() e 1166
BIN2ZW() oo 1167
BOF() vttt 1167
CDOW() e, 1167
CHRO) vt 1167
CMONTHO) - 1167
COLQ) vt 1167
COLORSELECT() v 1168
CTOD() e 1168
CURDIR() ..o 1168
DATE() .ot e 1168
DAY() e 1168
DBAPPEND() ...t 1168
DBCLEARFILTER() .« 1169
DBCLEARINDEX() © ... 1169
DBCLEARRELATION() ... 1169
DBCLOSEALL() ..o 1169
DBCLOSEAREA()voeeeeeei e 1169
DBCOMMIT() © ..o 1169
DBCOMMITALL) v 1169
DBCREATE() ..o 1169
DBCREATEINDEX() .+ veeeeeeeeeeeeeee 1170
DBDELETE() ..o 1170
DBEVAL() -« 1170
DBFILTER() ..t 1171
DBGOBOTTOM() ..o 1171
DBGOTO() v 1171
DBGOTOP() ...t 1171
DBRECALL() « vt 1171
DBREINDEX() ..o 1171
DBRELATION() ... 1171
DBRLOCK() ..+ 1171
DBRLOCKLIST() ..o 1172
DBRSELECT() - ..o 1172
DBRUNLOCK() ... oo 1172
DBSEEK() -+ttt 1172
DBSELECTAREA() ...t 1172
DBSETDRIVER() ...t 1172
DBSETFILTER() -+t 1173
DBSETINDEX() v 1173
DBSETORDER() ... 1173
DBSETRELATION() ©...voeeeeeeieeaeii 1173
DBSKIP() oo 1174
DBSTRUCT() .+ vt 1174
DBUNLOCK() -+t 1174
DBUNLOCKALL() « ..o 1174
DBUSEAREA() ... e 1174
DBDELETE() ..o 1175
DESCEND() ..o 1175
DEVOUT() «..ovoee e 1175
DEVOUTPICT() - .o 1175
DEVPOS() .. vt 1176
DIRECTORY() ..ot 1176
DISKSPACE() ... v 1176

DISPBOX() -+ vv e 1177
DISPOUT() « vt 1177
DOW() et 1177
DTOC() .o 1177
DTOS() et 1177
EMPTY() © oo 1178
EOF() .« 1178
EVALD vt 1178
EXPQ) vt 1178
FCLOSE() .ttt 1178
FCOUNT() « oo 1179
FCREATE() ...t 1179
FERASE() .« ..ot 1179
FERROR() ..ot 1179
FIELDBLOCK() « vttt 1180
FIELDGET() « vt 1180
FIELDNAME(Q) © ..ot 1180
FIELDPOS() « ..o 1180
FIELDPUT() .« e 1180
FIELDWBLOCK() ..+ 1180
FILEQ oo 1181
FLOCK() v 1181
FOPEN() ..o 1181
FOUNDQ) ..o 1181
FREAD() vttt 1181
FREADSTR() -+t 1182
FRENAME() ...\t 1182
FSEEK() vt 1182
FWRITEQ e 1183
GETENV() « oo 1183
HARDCR() ..o 1183
HEADER() ...ttt 1183
I2BINQ © e 1183
IFQ) e e e e 1184
INDEXEXT() oo 1184
INDEXKEY() .o 1184
INDEXORD() « ... 1184
INKEY() « oo 1184
INTO oo 1187
ISALPHAQ .ot 1187
ISCOLOR() -+ oo 1187
ISDIGIT() e 1187
ISLOWER() « .ot 1188
ISPRINTER() .ot 1188
ISUPPER() ..t 1188
L2BINQ e 1188
LASTKEY() © ..o 1188
LASTREC() .+ttt 1188
LEFTO) vt 1188
LENQ vt 1189
LOG() vt 1189
LOWER(Q - v 1189
LTRIMO v 1189
LUPDATE() ..o 1189
MAXO) oo 1189
MAXCOL) v 1189
MAXROW() .ot 1190
MEMOEDIT() ©. .t e e 1190
1129

MEMOLINE() .. veeeee e 1191

MEMOREAD() ...\t 1191
MEMORY() ..o 1191
MEMOTRAN(Q ..o 1192
MEMOWRIT() ©. ..o 1192
MEMVARBLOCK() ..o 1192
MINQ oo 1192
MLCOUNT() .o 1193
MLCTOPOS() ..o e 1193
MLPOS() ..t 1193
MONTHO) .o 1193
MPOSTOLC() ..o 1194
NETERR() © oo 1194
NETNAME(Q oo 1194
NEXTKEY() vt 1194
NOSNOW() ..ot 1194
ORDBAGEXT() v 1195
ORDBAGNAME() ... 1195
ORDCREATE() ..\ 1195
ORDDESTROY() ..o 1195
ORDFOR() ...t 1196
ORDKEY() vt 1196
ORDLISTADD() ..o 1196
ORDLISTCLEAR() .+« v veeeeee e 1196
ORDLISTREBUILD() .+ + e 1196
ORDNAME() - ..o 1197
ORDNUMBER() ...\t 1197
ORDSETFOCUS() ... v 1197
OS() - 1197
OUTERR() .+« eeee e 1197
OUTSTD() - 1197
PAD2() ..ot 1198
PCOL() vt 1198
PROW() .o 1198
QOUT() vt 1198
RAT() oo 1199
RDDLIST() <o 1199
RDDNAME() ... 1199
RDDSETDEFAULT() ..o 1199
READINSERT() ..ot 1199
READMODAL() .+t 1199
READVAR() - ..o 1200
RECNO() .t 1200
RECSIZE() .« 1200
REPLICATE() ..o 1200
RESTSCREEN() . ..uvveeoeee e 1200
RIGHT() © oo 1201
RLOCK() .+t et 1201
ROUND() .o et 1201
ROWO) e e 1201
RTRIM() oo 1201
SAVESCREEN() ... 1201
SCROLL() .o 1202
SECONDS() .o 1202
SELECT() .o 1202
SET() « vt 1202
SETBLINK() e eeeeee e e 1203
SETCANCEL() .ot 1203

SETCOLOR() + 'ttt ii i 1203
SETCURSOR() + vttt e 1203
SETKEY() « oo 1203
SETMODE() v v eee it 1204
SETPOS() « vt ittt 1204
SETPRC() vttt e 1204
SOUNDEX() « v iveeeiee e 1204
SPACE() .ttt 1204
SORT() v vttt 1204
STRO) v e 1205
STRTRAN() « vttt 1205
S LU= = T 1205
SUBSTR() + vttt 1205
TIME(Q) oo 1206
TONE() oot e 1206
TRANSFORM() .« e 1206
TYPE(Q) « oottt 1206
UPDATED() + vt vteie e 1207
UPPER() v ot 1207
USED() + ottt e 1207
VALQ) © ottt 1207
VALTYPE() « v i 1207
YEAR(Q © et 1207
nBfunctions e 1208
ACCEPT() v vt it 1208
ACHOICE() « v e it ee e 1208
ACHOICEWINDOW() .+ v vt 1208
ALERTBOX() .« 1209
ATB() « ot 1209
BCOMPILE() .. @@ oo 1210
BUTTONQ «vvit e 1210
COLORARRAY() + vt 1210
COORDINATE() « vt ettt i 1210
COPYFILE(Q) « vt 1211
DBAPP() ...t 1211
DBCLOSE() vttt i e 1211
DBCONTINUE(Q) ..o e e 1212
DBCOPY() « ottt e 1212
DBCOPYSTRUCT() + v 1212
DBCOPYXSTRUCT() +vvvvvieeieieiieiieaieannns 1212
DBDELIM() @ vvvveeee et 1212
DBISTATUS() e e 1213
DBISTRUCTURE() « . vv oottt 1213
DBIOIN(« oot 1213
DBLABELFORM() .« vieie i 1214
DBLIST() « v v vt 1214
DBLOCATE() « vttt et e 1214
DBOLDCREATE() ..o 1215
DBPACK() + ettt 1215
DBSDF() .ttt et e e et 1215
DBSORT() « vt vttt et e 1216
[I 2 A I 1216
DBUPDATE() vt vttt et 1216
DBZAP() ottt 1217
DISPBOXCOLOR() .. 1217
DISPBOXSHADOW() . ..vie it 1217
DIR() et 1217
DOC() « ettt ettt 1218
1131

DOTLINE() .\t 1218
DTEMONTH() -+ 1218
DTEWEEK() « .ot 1218
EXO « v 1218
GET() « v 1219
GVADD() ..o 1219
GVDEFAULT() « vt 1219
GVFILEDIR() « vt 1219
GVFILEEXIST() « vt 1219
GVFILEEXTENTION() ..o 1220
GVSUBST() ..o 1220
HTFQ @ 1220
ISFILEQ) v e 1220
ISWILD() .o 1220
ISMEMVAR() -+ et 1221
ISCONSOLEON() ..o 1221
ISPRINTERON() -+t 1221
KEYBOARD() ... 1221
LISTWINDOW() ..o 1221
MEMOWINDOW() ... 1221
MEMPUBLIC() ... 1222
MEMRELEASE() ...\t 1222
MEMRESTORE() ... @voeeeeeeeeee e 1222
MEMSAVE(..o 1222
MENUPROMPT() ..ot 1222
MENUTOQ) ..o 1222
MESSAGELINE() © ... 1223
MOUSESCRSAVE() ..o 1223
MOUSESCRRESTORE()vvoveneennnn.. 1223
PICCHRMAX() ..o 1223
QUITO oo 1223
READ() .« v et e 1224
REQ et 1224
RPT() et 1224
RPTMANY() ..ot 1224
RPTTRANSLATE() © ..o 1225
RUNQ oo 1225
SAY() 1225
SETCOLORSTANDARD()voeeeeenenenn . 1225
SETFUNCTION() ..ot 1225
SETMOUSE() ..o, 1225
SETOUTPUT() v 1226
SETRPTEIECT() « oo 1226
SETRPTLINES() © v 1227
SETVERB() ..o 1227
SETVERB("EXACT") (obsolete) 1227
SETVERB("FIXED") ...\ 1228
SETVERB("DECIMALS") ...\ 1228
SETVERB("DATEFORMAT") ...\, 1228
SETVERB("EPOCH") ...\ 1228
SETVERB('PATH") ...t 1228
SETVERB("DEFAULT") ...t 1229
SETVERB("EXCLUSIVE")voeeeiieinn. 1229
SETVERB("SOFTSEEK")\iviieieiiein.. 1229
SETVERB("UNIQUE") (obsolete) 1229
SETVERB("DELETED") ...\ 1229
SETVERB("CANCEL") ...\t 1229
SETVERB("TYPEAHEAD")ovoiieeen.. 1229

1132

SETVERB("COLOR") ..\ 1229

SETVERB("CURSOR") ... i 1230
SETVERB("CONSOLE") 1230
SETVERB("ALTERNATE")ot 1230
SETVERB("ALTFILE") ... 1231
SETVERB('DEVICE") 1231
SETVERB("EXTRA") ... 1231
SETVERB("EXTRAFILE") 1231
SETVERB("PRINTER")o 1231
SETVERB("PRINTFILE") ... 1231
SETVERB("MARGIN") 1231
SETVERB("BELL") ...t 1231
SETVERB("CONFIRM") i 1231
SETVERB("ESCAPE") ... i 1232
SETVERB('INSERT") ... 1232
SETVERB('EXIT") oot 1232
SETVERB('INTENSITY") ... 1232
SETVERB("SCOREBOARD")coiiiiiinn. 1232
SETVERB("DELIMITERS") 1232
SETVERB("DELIMCHARS") ..., 1233
SETVERB("WRAP") ... 1233
SETVERB("MESSAGE") 1233
SETVERB("MCENTER") ... 1233
STRADDEXTENTION() ..o 1233
STRCUTEXTENTION() ... 1233
STRDRIVE() .ottt 1233
STREXTENTION() ..ot 1234
STRFILE(Q) « i e 1234
STRFILEFIND() ..o 1234
STRGETLEN() .« 1234
STRLISTASARRAY() it 1234
STROCCURS() + v veeie it 1234
STRPARENT() et 1234
STRPATH() oottt 1235
STRTEMPPATH() ..o 1235
STRXTOSTRING() « o oetii i 1235
TB() et e .1235
TEXT() o eeee e 1236
TGLINSERT() «.vvviie e 1236
TIMEXZNQ) e 1236
TIMENZ2H() oo 1236
TIMENZ2M() oo 1236
TIMEN2S() « oo 1237
TRUESETKEY() « i 1237
WAITFILEEVAL() .« .vviii e 1237
WAITFOR() « oot 1237
WAITPROGRESS() ... ove i 1237
Normal command substitution 1237
nB command substitution functions 1247
RPT: the nB print function 1251
Memvars andfields 1251
ComMMaANdSttt 1251
Examples ... 1253
Howcanl.. ... i 1254
The sourcefiles i, 1255
1133

DOS XBaASE ...ttt 1134 « ‘D, date, a field dedicated to date information;

COMPOSILION ...ttt 1137 ‘L’, logic, a filed that may contain only” for True or‘F for
HOWO USE NB - oo o oo 1139 False used as a boolean variable;
Status iNe ..o 1140 °'M, memo, a cha_rac_ter field with no pre_defined dim_ension, not
. allocated directly inside the DBF’, but inside &. DBT’ file, au-
Thedothine ... e 1140 tomatically linked.
Themenusystem, 1140 .))))
. No other field type is available for a typical xBas®BF' file.
Thetexteditor DOC()vviriiiii i 1149 . o) _
. To access the data contained insideBF file the following list of
The helptextfileoiiia, 1150 action may be followed:
MaCIO .. e 1150 o
* Open &. DBF file inside the current area, where these areas are
DAATYPES ..o 1154 something like file handlers.
OPEratorsoooiiiiiiiii 1160 « After the . DBF’ file is opened, it referenced only by the alias
DEliMItersouiiti e 1161 name that usually correspond to the original filename witlegti
Codeblocks ... 1162 tention. _ _ _
Standard functions 1162 » Move the record pointer to the.deswed location.
NBfuNctions 1208 * Lock the cur.r.ent re.cord to avoid acc.ess f.rorfn other users.
Normal command substitution 1237 * Dq some e_dltlng with the data contalned_ inside the curesrind
using the field names like they were variables.
nB command substitution functions 1247
]) * Release the lock.
RPT: the nB printfunction 1251 « Move the record pointer to another desired location.
HOW CaN [1254 « Lock the current record to avoid access from other users.
The sourcefiles ..., 1255 .
nB! (“nano Base™: “n” = “nano” = 10**(- 9) = “very little”) is a « Close the alias.
little Dos xBase written in Clipper 5.2 that can help to asceSBF’
file created with different standards. Before you go further, you have to understand that:
nB is: « A . DBF file is opened using a free WORK AREA that may be

« a dot command interpreter, associated t‘o the concept o.f the fl|? handler. .
« a menu driven xBase, » The*. DBF’ file is opened with a alias name that permit to open

the same. DBF file more times when using different alias names.

. B int ter. - .
axiase program Inferpreter * After the‘. DBF file is opened, we don’t speak any more of file,

but alias.
Dos xBase . i))
« If the work area "n" is used from the alias "myAlias", speski
This section is a brief description of the functionality ofygical of work area "n" or of alias "myAlias" is the same thing.
Dos xBase.
Index files

The first purpose of a xBase program is to handle data inside ¢
‘. DBF file. These files may be indexed with the help of index files
and more. DBF’ files may be linked with a relation to obtain some-
thing like a relational database.

«
‘. DBF files are organised with record number, that is, you can reach
a specific record and not a specific information unless thatspan
record by record.

.DBF files To obtain to "see" a. DBF’ file somehow logically ordered (when
physically it is not), index files are used.

‘. DBF files are files organised in a table structure: ;) .) .
A index file, also called INDEX BAG, is a file that contains one o

43 | recordl more indexes
record? Indexes are rules by which'aDBF’ file may be seen ordered.
Fecond A typical index file may contain only one index.

et A index file may have the following extention:

record5

| records ‘. NDX, single index, dBase Ill and dBase Ill plus;
The lines of this table are records and the columns are fields ‘. NTX, single index, Clipper;
Records are numbered starting from the first that is number 1. ‘. MBX', multiple index, dBase 1V;
Columns are defined as fields and fields are distinguished o na « *. CDX', multiple index, FoxPro.

and these names are saved inside tBF’ file.

Every field (column) can contain only one specified kind odaith
a specified dimension:

Every index file may be used only in association with theBF’
for what it was made. The problem is that normally there is no

«'C, character, originally the maximum dimension was 254 char- way to avoid errors when the user try to associate the righF
acters, minimum is 1; file with the wrong index.

* N, numeric, a numeric field that can contain also sign and deci- g gccess the data contained inside@BF file the following list of
mal values; action may be followed:

1134 1135

* Open &. DBF file.

» Open a index file.

« Select a particular order.

« Search for a key or move the record pointer on a different way
* Lock the current record to avoid access from other users.

» Do some editing with the data contained inside the curmeetnd
using the field names like they were variables.

* Release the lock.
» Move the record pointer to another desired location.
* Lock the current record to avoid access from other users.
* Close the alias.
Before you go further, you have to understand that:

* As orders are contained inside a INDEX BAG file physicallg-di
tinguished form theé. DBF file, it may happen that a DBF file
is wrongly opened and edited without the index. In this case,
the INDEX BAG is not updated and when the INDEX BAG wiill
be opened, the records contained inside‘tmBF’ file may not
correspond.

« For the same reason, an improper program termination nsayjtre
in anincomplete data update. ThatisbBF’ file may be all right,
INDEX BAG not.

* This is why xBase programs are "weak" relational databases
they are not relational databases at all.

* When troubles occurs, indexes must be rebuild.

Relations

Many*. DBF files with indexes may be opened simultaneously. Data
contained inside more DBF’ files may be somehow connected to-
gether. See the example.

Date | Time IN | Time OUT | Employee # |
| | |
XXXX | XXXXXXX | XXXXXXXX
| | |
yyyy | yyyyyyy | yyyyyyyy | 02
| |
|

N
N
N
N

zzz2zz22z | 2zz22222

| Employee # | Name | Address |.....
|

01 | aaaaaaa

bbbbbbb | bbbbbbb | .

cccecec | €oceeet | aawan

The first‘. DBF file contains some data that refers to an Employee
number that may appear repeated on more records.

Employee informations are stored inside anothéBF' file that
contains only one record for every employee.

Establishing a relation from the firstDBF’ file to the second, mov-
ing the record pointer of the firstDBF file, that is the first alias, the
record pointer of the second, the child alias, is moved aatmally
to the record containing the right data.

The relation is an expression that should result in a nunfbibei
child alias is opened without index, or in a valid index keyhé
child alias is opened with an index.

To relate two'. DBF' files the following list of action may be fol-
lowed:
» Open the first. DBF’ file.
» Open a index file for the first alias.
« Select a particular order.
1136

* Open the second DBF file.

» Open a index file for the second alias.
* Select a particular order.

* Select the first alias.

» Define a relation form the first alias and the second alias: th
child alias.

« Search for a key or move the record pointer of the first atlas't
care about the Child alias).

« Lock the current record to avoid access from other users.

« If data contained inside the Child alias should be editestiglly
it doesn’t happen), lock the current record of the Childsalia

» Do some editing with the data contained inside the curmectdnd
using the field names like they were variables.

* Release the lock (also with the Child alias if a lock was made
» Move the record pointer to another desired location.
* Lock the current record to avoid access from other users.

[..]

» Release the relation.
« Close the Child alias.
¢ Close the first alias.

As may be seen, relations are not saved inside files, but tagel
with lines of code.

Composition
«
nB is composed from the following files, whexe is the the version
code.
NBASExx1.ZIP
NBASExx2.ZIP
NBASEXxx3.ZIP
NBASEXxx4.ZIP
NBASEXxx5.ZIP
NBASEXxx6.ZIP
NBASEXxx7.ZIP

EXEs for small PCs
Runtime EXEs for small PCs
EXEs for i286 with 2M+
DOCs

EXAMPLEs

SRCs for version 96.06.16
SRCs for the current version

Every archive file contains:
GNU General Public License version 2]in

‘COPYI NG TXT’

Dos text format.
‘README. TXT’ the readme file.
‘FILE_ID. DI Z definition.

The file*NBASExx 1. ZI P’ contains also the following files.
the executable program for DBFNTX ahd
DBFNDX files, linked with RTLINK.

this manual in "Help Text File" format.

‘NB. EXE’
‘NB. HLP'

The file NBASExx2.ZIP contains also the following files.
the run-time to execute macro programsifor
DBFNTX and DBFNDX files handling,
linked with RTLINK.

‘NB. EXE’

The file*NBASExx3. ZI P’ contains also the following files.
the executable program for DBFCD

Fa)

‘NB. EXE' DBFMDX, DBFNDX and DBFNTX files,
linked with EXOSPACE.
‘NB. HLP’ the user manual in "Help Text File" format.

The file*NBASExx4. ZI P’ contains also the following files.

‘NB. PRN' the user manual in printed text format.
‘NB. RTF’ the user manual in RTF format.

‘NB. TXT’ the user manual in ASCII text format.
‘NB. HTM the user manual in HTML format.

The file*NBASExx5. ZI P’ contains also the following files.

1137

The file ‘NBASExx6. ZI P’

‘_ADDRESS. DBF’ an example database file.

‘_ADDRESS. NTX index file associated to ADDRESS. DBF'.

. , a label form file used to print data cop-

A SS. LBL tained inside_ADDRESS. DBF' .

) a report form file used to print data cop-

ADDRESS. FRM) s

- SS tained inside_ADDRESS. DBF' .

. , a RPT text file used to print data contained

A SS. ReT inside‘_ ADDRESS. DBF' .
a macro program source example of a
menu that executes some others macro pro-
grams. This example is made to demon-

VA NM\U, & strate h_ow nB can g)_(ecgte dlrectly asource
code without compiling it. This example is
made only to taste it: it is very slow and
only a speedy machine can give the idea of
a macro program source example of a
menu that executes some others macro pro-

‘OMAI NMNU. & grams. Itis the same asvAl NWVNU. & but
itis made to start the execution of the com-
piled macros.

‘ONVAI NMNU. NB' compiled macro progran®VAI NVNU. &

] , a batch file to show how to run the execu-

ONAT VU, BAT tion of ‘OMAI NMNU. NB'
a macro program source example for han-

‘1ADDRESS. & dling a‘. DBF file containing addresses in
various ways.

‘1ADDRESS. NB' compiled macro1ADDRESS. & .
a macro program source example for han-

‘2 ADDRESS. & dllqg a‘. DBF f||e_contg|n|ng addres_ses n
various ways: a little bit more complicated
than 1ADDRESS.&.

‘2ADDRESS. NB' compiled macro2ADDRESS. & .
a macro program source example for han-

‘3ADDRESS. & dlln_g a‘. DBF flle_contr_sunlng addres_ses n
various ways: a little bit more complicated
than‘2_ADDRESS. & .

‘3ADDRESS. NB' compiled macro3ADDRESS. & .
a macro program source example for han-

AADDRESS. & dlln_g a‘. DBF flle‘contr‘s\mlng addres_ses n
various ways: a little bit more complicated
than‘'3ADDRESS. &' .

‘4 ADDRESS. NB' compiled macro4ADDRESS. & .

ABI ORI TM. & a macro program source example for gal-
culating the personal bio wave.

‘ABI ORI TM NB' compiled macroABI ORI T™M & .

. STUDENT. DBF' a ‘. DBF file used inside the BSTUDEN
macro example.

‘_STUDENT. NTX index file used for_STUDENT. DBF’ .

- STUDSTD. DBF' a ‘. DBF file used inside the BSTUDENTT
macro example.

] , a RPT text file used to print data contained

—STUDENT. RPT inside' _STUDENT. DBF’ .
a RPT text file used to print data contained

‘_STUDSTD. RPT’ C

- inside’_STUDSTD. DBF' .
a macro program source example for stu-

‘BSTUDENT. & dents evaluation: a description about stu-

’ dents is obtained linking other standard de-

scriptions.

‘BSTUDENT. NB' compiled macroBSTUDENT. & .
a macro program source example to gen-

‘CBATMAKE. & erate a batch file to be used to back up an
entire hard disk.

‘CBATMAKE. NB' compiled macroCBATMAKE. & .

"BROVEE. & a macro program source example to start
an automatic browse.

‘BROWBE. NB' compiled macroBRONSE. & .

B £ BAT batch file to start & DBF browse with the

’ BROWSE macro program.

VENLL & amacro program source example for a Dos
menu.

‘MENU. NB' compiled macroMVENU. & .

‘MENU. BAT’ batch file to use the MENU macro.

contains also the following files: source
code for the version 96.06.16.

1138

‘NB. PRG the main source file for version 96.06.16.

‘NB_REQ PRG the source f|Ie_ containing Tinks to all the
standard functions.

‘NB. LNK’ link file for compilation.

‘NB_NRVAL. RWK
‘NB_EXOSP. RWK

rmake file to compile with RTLink.
rmake file to compile with Exospace.
rmake file to compile with RTLink defining

‘NB_RUNTI . RWK' RUNTIME to obtain a small nB runtime
version. _ _

‘MACRO. LNK' link file to compile and link a macro.

‘MACRO. RWK' rmake file to compile and link a macro.

The file ‘NBASExx7. ZI P’ contains also the following files: source
code for the current version.

‘NB. PRG the main source file.

‘REQUEST. PRG th_e source fl_le containing links to all the
Clipper functions.

‘' STANDARD. PRG the source file for standard functions.

‘EXTRA. PRG the source file for other standard functions.
general include file that substitutes all jn-

' STANDARD. CH clude file normally used for normal Clipper
compilations.

‘NB. CH include file specific for nB.

‘NB. LNK' link file for compilation.

‘NB_RUNTI . LNK link file for runtime compilation.

‘NB_NRVAL. RWK rmake file to compile with RTLink.

‘NB_EXOSP. RWK' rmake file to compile with Exospace.
rmake file to compile with RTLink defining

‘NB_RUNTI . RW' RUNTIME to obtain a small nB runtime
version.

‘MACRO. CH include file to compile and link a macro.

‘MACRO. LNK' link file to compile and link a macro.

‘MACRO. RWK' rmake file to compile and link a macro.

a simple free library for mouse support un-

‘CLI PMOUSE. 21 P der Clipper (c) 1992 Martin Brousseau.

How to use nB

«
nB normal syntax is:

nB [nB_parameter}; [macro_filenam} [macro_parameteffs

To run nB, just type the word "NB" and presBriter] to execute. It
will run in command mode, this means that it will look like akdl o
XBASE command prompt.

To run the program as a macro interpreter, type the word NB fol
lowed from the macro file name with extention (no default etiten

is supposed). If parameters are given, after the macro fileena
these will be available inside the public variables: c_ParPar2,
..., ¢_Par9. c_Par0 will contain the macro file name (see theon
file BROWSE.&). nB will terminate execution when the macro te
minates.

These parameters are available for nB:

Suppress the copyright notice. It is usefu
when using nB for macro interpretation.
Suppress the "Wait-Wheel" if not desired.
It is the "Wheel" that appears at top-left
when a macro is interpreted or other long

elaborations are executed.
-2 Shows a short help.

-C

-W

nB macro "compilation" syntax is:

nB -m source_macro_filenam{ destination_macro_filenan}e

With the -m parameter, nB “compiles® the ASCII

source_macro_filenaménto destination_macro_filename

1139

Status line

«
nB shows a "status line" at the top of the screen when the nB com
mand prompt or the menu system is active. It shows some irtort
informations.

The Menu system is organised into horizontal menu, verticaium
and pop-up menu.

The horizontal menu contains selectable items organiseddm
tally:

| |DBFNTX [BE3!
|

1|ADDRESS 1/ 4| ADDRESS.NTX |
| | |
| |
| Last record (7).
|

| [

[[|

[[I

[[I

[[| Record pointer position (6).
[[|

] | | | Active alias (5).

[[

[| Current Work Area (4)

[|

1 Deleted record appearance (3)

[

| Actual default database driver (2).

1

Macro recorder indicator (1).

1 1/ 4|ADDRESS.NTX | 1|ADDRESS
| | |
| | |
| | Order Tag Name (10)
| |
| Order number (9)
|

Order Bag name (8)

(1) This is the place for the macro recorder indicator. Thalsyl
used is "&". Blank means that the macro recorder is OFF; &itig
means that the macro recorder is ON; & fixed means that theamacr
recorder is PAUSED.

(2) The name of the default database driver. It is not necéstize
database driver for the active alias; it is only the dataldaiser that
will be used for the next open/create operation.

(3) An asterisk (*) at this position indicates that SET DELHT

is OFF. This means that deleted records are not filtered. Vdhen
BLANK is in this place, SET DELETED is ON, so that deleted
records are filtered.

(4) The active work area number, that is, the area of theaefias.

(5) The active alias name. Note that the alias name is nossatg/
equal to the. DBF' file name.

(6) The actual record pointer position for the active alias.

(7) The number of records contained inside the active alias.
(8) The Order Bag name; that is the index file name.

(9) The order number.

(10) The order tag (name). When DBFNTX database driver id,use
it correspond to the Order Bag name.

The dot line

Starting nB without parameters, the dot line appears. Thihe
place where commands in form of functions may be written and e
ecuted like a old xBase.

The functions written inside the command line that don’utesm

an error, are saved inside a history list. This history listynbe
recalled with [F2] and then the selected history line may be reused
(eventually edited). Keyyp]/[down] may be used to scroll inside
the history list without showing the all list witH2].

[Enter] is used to tell nB to execute the written function.
As the dot line is not an easy way to use such a program, a meni
is available pressingH10] or [Alt M]. The [F10] key starts the

ASSIST() menu. This menu may be started also entering thenam
of the function: "ASSIST()".

nB includes a simple built-in text editor: DOC(). It may barsed
from the dot line entering "DOT()". No special key is dedezato
start this function.

The menu system

The nB menu system appears differently depending on theeplac
where itis "called". When available, the menu system appeass-
ing [Alt M] or [F10].

1140

[One Two Three Four Five]

The cursor may be moved on a different position using arroys ke
[Left])/[Right]; [Esc] terminates the menufnter] opens a vertical
menu.

The vertical menu contains selectable items organisedtabiyt

One Two Three Four Five

|First |
| second |
| Third |

The cursor may be moved on a different position using arroys ke
[Up)/[Down]; the arrow keys Left]/[Right] change the vertical
menu; [Esc] closes the vertical the menuEfter | starts the selected
menu function.

The vertical menu contains selectable items organisedtabyt

One Two Three Four Five

e e
The cursor may be moved on a different position using arroys ke
[Up)/[Down]; [Esc] closes the pop-up the meniEidter] starts the

selected menu function.
The following sections describe the menu system.

Menu File
«

The menu File contains important function oBF file, indexes,
relations and Replaceable database drivers.

For database files are considered two aspects: the physjpatta
and the logical alias. When‘aDBF' file is opened, it becomes a
alias.

Indexes are considered as index files and index orders.
It follows a brief menu function description.

Change directory
Changes the actual drive and directory.

File .DBF
Contains a pop-up menu forDBF’ operations.

New .DBF
A ‘. DBF file is a table where columns, called Fields, must
be specified and lines, called records, are added, edited an
deleted by the program.
Field characteristics are:
the field name must be unique inside
the same file, it is composed of letters,
number and underscore (), but it must
start with a letter and it is not case sen-
sitive.
the field type determinates the type|of

data it can hold. .)
is the field total length in characters;) it

doesn’t matter of the type of data.
is the length of positions after decimal
point. This information is used nof-
mally for numeric fields. In this case,
take note that the DECIMAL length,
together with the decimal point, will
subtract space for the integer part of the
number from the total LENGTH of the
filed.

NAME

TYPE

LENGTH

DECIMAL

Field Types:

1141

itis a text field long LENGTH charag-

ters.
it is a numeric field Tong LENGTH

characters with DECIMAL charactefs
for decimal positions. Note that |f
LENGTH is 4 and DECIMAL is 0
(zero), the field may contain integers
from -999 to 9999; but if LENGTH is
4 and DECIMAL 1, the field may con-
tain numbers from -9.9 to 99.9: two po
sition for the integer part, one positi¢
for the decimal point and one positi

for decimal,
itis a date field: it contains only dates;

the length should not be specified as
is automatically 8.

itis alogical (boolean) field: it contain
only TRUE, represented by "Y" or "T',
or FALSE, represented by "N" or "F{.
The length should not be specified as i
is automatically 1.
it is a character field with unknown di
mension. It is recorded into a parallel
file with *. DBT” extention. The original
‘. DBF file holds a space for a pointe
inside the'. DBT’ file. The length of &
Memo field is automatically 10 and |s
referred to the memo pointer.
After the function "NEW .DBF" is selected, a table for the
field specifications appears.

C Character

N Numeric

35 S

t

D Date

[}

L Logic

-

M Memo

=

Database file structure

Field Name Type Length Decimal

| |
| |
| |
| |
|] 0|
To navigate and to edit the table use the following keys:

Amove the cursor one position (up
[Up)/[Down]/[Left][Righidwn, left or right);

PgUp move to previous screen page;
PgDn move to next screen page;
Ctrl PgUp] move to top of table;
Ctrl PgDn] move to bottom of table;
Ctrl Home move to first column;
Ctrl End] move to last column;
Ctrl Enter] append a new empty line;
delete (cut) the currentline and save a
(Ctrl F1] copy into the "clipboard";
[Ctrl F2] copy S.urrent line into the table "clip-
board ; -
[Cirl F3] g]sert"(paste) the conter?t. of .the clip-
oard" in the current position;
Enter] start editing in the current position;
Esc] terminate;
[x] any other key will be written in the cuf-
rent position.

When the editing is terminated, predssf] and a dialog box
will ask for the file name and the RDD.
xBase files (.DBF) are not all equal, this way, when a new
‘. DBF file si created, the RDD (Replaceable Database Driver)
is asked. The normal RDD is DBFNTX, the one used by Clip-
per.

Modify .DBF structure
The modification of a. DBF' file structure is a delicate matter
if it contains data.
In fact, it is a data transfer from a sourceBF’ file to a des-
tination*. DBF file with a different structure. This way, the
destinatiort. DBF will be updated only for the fields with the
same name of the source one. The position may be different
but names cannot be changed (not so easily).
Mistakes may be dangerous, so, before doing it, it is recom-

1142

mended a backup copy of the originabBF file.

Open .DBF
When a‘. DBF file is opened, it becomes a alias, a logical
file, placed inside a work area. The sameBF' file may be
opened inside different areas with different alias names.
The required information to open the file are:

FILENAME the physical file name.

the alias name. If not assigned, it be-

comes automatically the same of FILE-

NAME without extention.
the Replaceable Database Driver to Use

to access to this file.
a logical value: TRUE means that the

file will be accessible to other users,

FALSE means use exclusive.
a logical value: TRUE means that the

file will be only readable and no modi-
fication will be allowed, FALSE means
that no restriction on editing will be
made.

ALIAS

RDD

SHARED

READ ONLY

File .NTX
Contains a pop-up menu for physical indexes operations.

New .NTX / new tag
If the active area is used we have an active alias. In thiszase
index may be created. The index is a way to see the active alias
ordered without changing the physical position of records.
There are two words to understand: ORDER and INDEX-
BAG. The index bag is the file that contains the information
on the record ordering, the order is the rule followed to orde
the records. A index bag may contains one or more orders
depending on the Replaceable Database Driver in use.
Typical‘. NTX file are index bag containing only one order.
Depending on the RDD in use the following field may be filled.

INDEX FILENAME this is the name of the index bag.

the expression that defines the rule ffor

KEY EXPRESSION the record ordering.

this is the name to give to the order

(tag) when the RDD permits to have a

index bag containing more than one or-

der. In the other case, the index bag
name correspond to the order name

a FOR condition to filter records before

indexing.

ORDER NAME

FOR EXPRESSION

Open index
If a index file already exists, it can be associated to theacti
alias simply opening it.

Take note that the system is not able to verify if the index
belong the active alias and if it is not so a error will resulf.

is the name of the index bag file to

INDEX NAME open.

Alias
Contains a pop-up menu for logical databases (alias) apesat

Select
Only one may be the active alias and with this function the
active alias may be changed choosing from the list of used
areas.
Selecting the area number zero, no alias is active.
Display structure
With this function the active alias structure may be viewed.
Close active alias
Selecting this function the active alias is closed. Thaths
‘. DBF file and eventual indexes are closed.
Close all aliases
With this function all Aliases are closed.

1143

Order
Contains a pop-up menu for logical indexes (orders).

Order list rebuild

This function rebuild the indexes opened and associatetkto t
active alias.

Order set focus

This function permits to change the active order selectngf
the ones opened and associated to the active alias.

Order list clear
This function closes all orders associated to the actiesali
Relation
Contains a pop-up menu for relations (links with other Adis)s
Set relation
This function permits to establish a relation between asalia

and a Child alias showing as a result a unique database.
is the alias name to connect to the ac-

CHILD : .
tive alias.
is the relation expression that specify
the rule for the relation. The value of
this expression is the key to access the
EXPRESSION Child alias: if this Child alias is ac-

cessed without index, it must be the
record number, if this Child alias is ac-
cessed via index, it must be a valid in-
dex key.

Clear relation
This function eliminates any relation that originate forne t
active alias.
RDD default
Contains a pop-up menu for Replaceable Database Driver de
faults.
Show actual RDD default
It simply shows the actual Replaceable Database Driver.
Set default RDD
Select a new default Replaceable Database Driver.

Menu Edit

«
The menu Edit contains functions to access data from theeaatibs
(the actual area).

View
This function permits you to view the active alias with eveait
relations as a table.
No edit is allowed.
To navigate the table use the following keys.

[Enter] start field editing.
[PgUp] show previous screen page.
[PgDn] show next screen page.
[Ctrl PgUPp] show top of alias.
[Ctrl PgDn] show bottom of file.

Ctrl Home] show the first column.

Ctrl End] show last column.

Edit/browse

This function permits you to edit the active alias with ewet
relations as a table.

To navigate and edit the table use the following keys.

1144

Enter] start field editing.
PgUp] show previous screen page.
PgDn] show next screen page.
Ctrl PgUp show top of alias.
Ctrl PgDn show bottom of file.
Ctrl Home show the first column.
Ctrl End] show last column.
Ctrl Enter] append a new empty record.
Ctrl F2 copy the current record.
Ctrl F3 append and paste a record.
[Cirl F4] pa_slte a previously copied record, over-
writing the content of the current one.
Ctrl Y] delete or recall the current record.
Ctrl Del] delete or recall the current record.
When a memo field is edited:
Esc] cancel and close the memo window.
Ctrl Y] line delete.
Ctrl W] save and close the memo window.
Replace

The content of a Field of the active alias may be replaced avith
expression.

The required data is:

FIELD TO REPLACE | the Field name to be replaced.
NEW VALUE EXPRES-| the expression that obtain the new value

SION for the selected Field.
the WHILE condition expression: the re

placement continue until this expression
results True. The constantT. ' is ever

True and is the default. .
the FOR condition expression: the re-

placement is made for all records that
satisfy the condition. The constant.
is ever True and is the default.

WHILE EXPRESSION

FOR EXPRESSION

Recall

The records signed for deletion (deleted but still theregy oe
recalled (undeleted).

The required data is:

the WHILE condition expression: the
record recall continue until this expres-
sion results True. The constantr. ’ is

ever True and is the default.
the FOR condition expression: the

record recall is made for all records that
satisfy the condition. The constant.
is ever True and is the default.

WHILE EXPRESSION

FOR EXPRESSION

Delete

Deletes (sign for deletion) a group of record depending @n th
required conditions.

The required data is:

the WHILE condition expression: thHe
record deletion continue until this ex-
pression results True. The constant. '

is ever True and s the default.
the FOR condition expression: the

record deletion is made for all records
that satisfy the condition. The constant
‘. T.’ is ever True and is the default.

WHILE EXPRESSION

FOR EXPRESSION

Pack

This function eliminates definitely records previously etet
(signed for deletion).

It may work only if the active alias was opened in exclusivelgo

Menu Report

«
The menu Report contains functions for data report (pritmt)par-
ticular, label files. LBL' and report filé. RPT' may be created and
used for printing. There is also another way to print, with RPT()
system that is available inside the nB internal editor DOC()

1145

DBGOTOP()
Moves the record pointer for the active alias at the first lalgic
record.

New label

With this function can be created a standard label file (.LBHer
the dBaselll standard).

Labels may be printed in more than one column and can contair
16 lines maximum.

The label data is the following.

REMARK a label remark that will not be printed.

HEIGHT the label vertical dimension.

WIDTH the label horizontal dimension.

MARGIN the left margin in characters.

LINES the vertical spacing between labels.

SPACES the horizontal spacing between labels in
characters.

ACROSS the number of label columns.

LINE 1 The first line inside labels.

LINE n The n-th line inside labels.

LINE 16 The 16th line inside labels.

The number of lines inside the labels depend on the HEIGHT and
the maximum value is 16.

The label lines can contain constant string and/or strimges¢
sions.

See the example below.

Margin
XXXXXXX|
XXXXXXX |
XXXX Height XXXX < Width > XXXXXXXXXXXXXXXX
XXXXXXX|
XXXXXXX |
|
| Lines < >
| Spaces
XX Line 1 XXXXXX
XX Line 2 XXXXXX
XX Line 3 XXXXXX
XX Line 4 XXXXXX
XX Line 5 XXXXXX
| I |
| I |
| I |
Across
Modify label
This function permits you to modify a label file.
Label form

This function permits you to print labels with the data poad
by the active alias: one label each record.

The following data is required.
LABEL FILENAME

the label filename.
the WHILE condition: the label printing
goes on as long as this condition remain

WHILE

True. .

the FOR condition: only the records
FOR from the active alias that satisfy the can-

dition are used for the label print.

New report

This function permits you to create a standard report form fil
(.FRM under the dBaselll standard).

The informations to create' aFRM file are divided into two parts:
the head and groups; the columns.

The first part: head and groups, requires the folliwing infar
tions:

1146

PAGE WIDTH the page width in characters.

LINES PER PAGE the usable lines per page.

LEFT MARGIN the left margin in characters.

DOUBLE SPACED? double spaced print, yes or no.

PAGE EJECT BEFORE)

EARé’\E?EJECT . form feed before print, yes or no.
FTER :

PRINT? form feed after print, yes or no.

PLAIN PAGE? plain page, yes or no.

the page header, max 4 lines (the sepa-
ration between one line and the other is
obtained writing a semicolon, ";").
the group title.

the group expression (when it changes,
the group changes)

PAGE HEADER

GROUP HEADER
GROUP EXPRESSION
SUMMARY REPORT

only totals and no columns, yes or no.

ONLY?

PAGE EJECT AFTER form feed when the group changes, yes
GROUP? or no. _

SUB GROUP HEADER| sub group title.
gIL:)BNGROUP EXPRES'the sub group expression.
The second part: columns, requires the following inforomai
structured in table form:

column head description (it can contain

COLUMN HEADER 4 lines separated with a semicolon).

CONTENT the column expression.

WIDTH the column width.

DEC. the decimal length for numeric columns.
I fcul Il

TOTALS totals to be calculated, yes or no (usefu

only for numeric columns).
To navigate and to edit the table use the following keys:

| move the cursor one position (up, dov
[Up]/[Down]/[Left][Righikst or right);

>

[PgUp] move to previous screen page;
[PgDn] move to next screen page;
Ctrl PgUp move to top of table;
Ctrl PgDn move to bottom of table;
Ctrl Home move to first column;
Ctrl End] move to last column;
Ctrl Enter] append a new empty line;
[Ctrl F1] deletg (cut) tlt]e'current".llne and save a
copy into the "clipboard";
[Crl F2] copy Eurrent line into the table "clip-
board";
insert (paste) the content of the "clip-
[Crl F3] board" in the current position;
Enter] start editing in the current position;

Esc] terminate;

[x] any othe_r. key will be written in the cu
rent position.

When the editing is terminated, pre€ssf] and a dialog box will

ask for the name to give to the report form file.

Modify report
This function permits you to modify a standard report forre fil
(.FRM under the dBaselll standard).

Report form
This function permits you to print a report form with the data
provided by the active alias.
The following data is required.

REPORT FORM FILE-
NAME

the label filename.

the WHILE condition: the form printing
goes on as long as this condition remain

WHILE

True. .

the FOR condition: only the records
FOR from the active alias that satisfy the can-
dition are used for the report form print.

Create/modify/print text
This function activates the text editor.

1147

Menu HTF

«
The menu Htf helps on creating and accessing the "Help Téed'Fi
This name, help text file, is just the name given to it.

A text (Ascii) file prepared like this manual may be transferhinto
a "Help Text File" that is a simple text with pointers.

Open help text file

This function permits to open a Help Text File and browselite T
Help Text File name is required.

New help text file
This function permits to create a new "Help Text File" thatis
help file under the nB style.
The source is an Ascii file where three kind of information are
available: Normal text, Indexes and pointers.
Indexes and Pointers are word or phrases delimited withdeser
fined delimiters; indexes are placed inside the text to mtdian
argument, pointers are placed inside the text to indicaefea-r
ence to indexes.
Inside this manual, indexes are delimited with ## and ##heo t
titles are here indexes; pointers are delimited with < and >.
Only one index per line is allowed, only one pointer per lige i
allowed.
The Delimiters used do identify indexes and pointers are use
defined; the _start_ identifier symbol can be equal to the _end
identifier symbol. The symbols used for indexes cannot bd use
for the pointers.
So, the informations required are:

SOURCE TEXT FILE- .)
NAME the filename of the text source file.

DESTINATION FILE- | the filename of the destination Help Text

NAME File (suggested HLP' extention).
INDEX START CODE | the index start symbol; suggested ##.
INDEX END CODE the index end symbol; suggested ##.
POINTER START] .

. <
CODE the pointer start symbol; suggested

POINTER END CODE | the pointer end symbol; suggested >.
New HTML file
This function permits to create a new HTML file form a text file
formatted to obtain a HTF file.
The informations required are:

SOURCE TEXT FILE- X X
NAME the filename of the text source file.

DESTINATION FILE- | the filename of the destination Help Text

NAME File (suggested HLP' extention).
INDEX START CODE | the index start symbol; suggested ##.
INDEX END CODE the index end symbol; suggested ##.
POINTER START] f

. <
CODE the pointer start symbol; suggested

POINTER END CODE | the pointer end symbol; suggested >.
HTML TITLE the title for the html page.

Menu Macro
«

The menu Macro helps on creating macros (programs) with aanacr
recorder, a macro “"compiler" and a macro executor.

Start recording
This function simply starts or pause the macro recordinge Th
menu items that end with "&", may be recorded by this macro
recorder.
Save recording
A recorded macro may be saved into a ASCII file that may be
later modified or simply used as it is. The filename is requeste
Erase recording
While recording or when the macro recorder is paused, it po
sible to erase all previous recording with this function.

1148

Edit recording

While recording or when the macro recorder is paused, itésipo
ble to edit all previous recording, for example adding mame
ments or simply to see what the recorder does.

Macro compilation
A macro file (a program) contained inside a ASCII file, may be

compiled into a different file format to speed up executiohe T
source filename and the destination filename are requested.

Load + execute macro

A macro file (a program) in ASCII form or compiled, may be
executed.

A macro file may require some parameters.

This function asks for the macro filename to start and theipless
parameter to pass to it.

Menu Info
«

The menu Info is the information menu.

ABOUT a brief copyright notice.

starts the browse 6RB. HLP' , the nB Help|

Text File manual if it is present in the cur-

rent directory or it is found in the PATH

(the Dos SET PATH).

[F1] reminder.

[F3] reminder. 1t shows all the availab)|

information on the active alias.]
[F5] reminder. It defines the output periph

eral or file.

MANUAL BROWSE

[FI]HELP
[F3] ALIAS INFO

9]

[F5] SET OUTPUT TO

Menu Doc

«
This menu actually appears only inside the DOC() functiba,nB
text editor.

New
It starts the editing of a new empty text.
Open
It opens for editing a new textfile.
Save
It saves the text file under editing.
Save as
It saves the text file under editing asking for a new name.
Set output to
It permits to change the default output peripheral: the uefa
the screen.
Printasitis
It prints on the output peripheral the content of the text &s i
Print with RPT() once
It prints on the output peripheral the content of the texyamice
replacing possible text variables.
Print with RPT() std
It prints on the output peripheral the content of the texergng
this print for every record contained inside the archivesli
Exit DOC()

Terminates the use of DOC() the text/document editingfprin
function.

The text editor DOCQ

«

The function Doc() activates a simple text editor usefullbtald
some simple reports.

Inside this function a menu is available and is activatedsgng
[Alt M] or [F10]. The Doc() menu is part of the nB menu system.

DOC() may handle text files of a teorical maximum of 64K.
1149

«

DOC() may be particularly useful to create formatted texhwari- Macro statements

ables identified by CHR(174) and CHR(175) delimiters: whan a) o o«
active alias exists,f2] gives a list of insertable fields. The statements recognised from nB are very similar to Clippith
some restrictions.

The help text file

nB provides a basic hypertext system to build simple helg.file
source text file with "indexes" and "pointers" to indexesanslated
into a "help text file" (a. DBF’ file); then, this file is browsed by nB.

The source file can have a maximum line width of 80 characters;

each line can terminate with CR or CR+LF.

"Indexes" are string delimited by index delimiters (defdi#");
"pointers" are string delimited by pointer delimiters (@elt "<" and
">") and refers to indexes.

Inside a text, indexes must be unique; pointers can be repeaty-
where. A text can contain a maximum of 4000 indexes.

Inside this manual, titles are delimited with "##" as they imdexes;
strings delimited with "<" and ">" identify a reference toiéet with
the same string.

To browse a previously created Help Text File, use the fahow

keys:
Exc] Exit.
UpArrow] Move cursor up.
DownArrow] Move cursor down.
PgUp] Move cursor PageUp.
[PgDn] Move cursor Pagedown.
[Ctrl PgUp] Move cursor Top.
[Ctrl PgDn] Move cursor Bottom.
Enter] Select a reference (pointer).
<- Go to previous selected reference (pointer).
-> Go to next selected reference (pointer).
Shift F3] Search for a new pattern.
[F3] Repeat previous search.
Macro

nB can execute (run) macro files. There may be three kind ofanac
files: ASCII (usually with .& extention); "compiled” (usuglwith
.NB extention); EXE files (compiled with Clipper and linked)

"Compiled" macro files are executed faster then the ASClra®u
files.

EXE macro files are the fastest.

1150

Esc] Exit DOC().

F1 Call the help. Note that: the FOR statement is not included; there is notioimc
F2 Field list. declaration; procedure calls cannot transfer variablegy public

up] /[Ctrl E] Line up. variables are allowed.

down] /[Ctrl X] Line down.

left] /[Ctrl §] Character left. PROCEDURE

right] /[Ctrl D] Character right. Procedures are the basic building blocks of a nB macro.

g:: Ir('e?t?t/] [/étcrzltr::']a‘] wg:g Inegﬁht Procedures are visible only inside the current macro file.

Home] Line start. The procedure structure is as follows:

End] Line end.

Ctrl Home] Top window. PROCEDURE procedure_name

Ctrl End] Bottom window. statements.

Pgup] Previous window. [rETURN]

PgDn] Next window. statements.

Ctrl PgUp Document start. ENDPROCEDURE

Ctrl PgDn End document. - - - .
Dd] Delete character (right). A procedure definition begins with a PROCEDURE declaration
Backspace] Delete character Left. followed with theprocedure_namend ends with ENDPROCE-
Tab] Insert tab. DURE.

Ins] Toggle insert/overwrite. Inside the PROCEDURE - ENDPROCEDURE declaration are
Enter] Next line. placed the executablgtatementswhich are executed when the
Ctrl Y Delete line. procedure is called.

Slr(')]T/[ATH] geolect(e)r word right Inside the PROCEDURE - ENDPROCEDURE declaration, the

RETURN statement may appear. In this case, encounteriag thi
RETURN statement, the procedure execution is immediagely t
minated and control is passed to the statement followingate
ing one.
The procedure definition do not permit to receive parameters
from the calling statement.

DO PROCEDURE
There is only one way to call a procedure:

DO PROCEDURE procedure_name

When the statement DO PROCEDURE is encountered, the con
trol is passed to the begin of the called PROCEDURE. After the
PROCEDURE execution, the control is returned to the stat¢me
following DO PROCEDURE.

The procedure call do not permit to send parameters to the pro
cedure.

BEGIN SEQUENCE

The BEGIN SEQUENCE - END structure permits to define a
sequence of operation that may be broken.

Inside nB, this control structure is useful only becausediethe
possibility to break the execution and pass control overetine
of it.

This way, encountering BREAK means: "go to end".

BEG N SEQUENCE
statements.
[BREAK]
statements.
END

Inside nB, error exception handling is not supported.
DO CASE

This is a control structure where only the statements faligva
True CASE condition are executed.

When the DO CASE statement is encountered, the following
CASE statements are tested. The first time that a condition re
turns True, the CASE'’s statements are executed and therotont
is passed over the END case.

That is: only one CASE is taken into consideration.
1151

If no condition is True, the statements following OTHERWISE

are executed. PROCEDURE procedure_name_1
statements.
DO CASE [rETURN]
CASE IConditionl statements.
statements. ENDPROCEDURE
[CASE |C0nditi0n2] PROCEDURE procedure_name_2
statements. statements.
[orHERwW SE] [rETURY
statements. statements.
END
ENDPROCEDURE
WHILE
The structure WHILE - END defines a loop based on a condition: DO PROCEDURE procedure_name_n

the loop is repeated until the condition is True.
The loop execution may be broken with the EXIT statement: it ~ Macro without procedures:
transfer control after the END while.
The LOOP statement may be use to repeat the loop: it transfe statements.

the control to the beginning of the loop. statements.
statements.

statements.
statements.

WHI LE ICondition
statements.

EXI T
[] nB Macros may be compiled with Clipper. To do so, the first struc
statements. .
[Lo ture example must be changed as follows:
statements. ‘ #1 NCLUDE MACRO. CH
END
DO PROCEDURE procedure_name_nth
”: PROCEDURE procedure_name_1
. . tate 1t
The IF - END control structure executes a section of code if a [rerRy
specified condition is True. The structure can also spediéy-a oo
native code to execute if the condition is False. PROCEDURE procedure_name_2
statements.
. RETUr
| F ICondition1 [sla(ern:js
statements. | ENDPROCEDURE
[ELSE]
. statements. To compile a macro with Clipper, the macro file name can be

changed intoMACRO. PRG and

[RTLI NK MACRO. RVK [Enter] |

should be started.

Variable declaration
«

Inside nB, variables are created using a specific function:
Macro comments

«
MEMPUBLI C(" cVarName') A nB Macro source file can contain comments. only the "//" com-
ment is recognised! This way: * and./*/ will generate errors!

For example,

[MEVPUBLI O " Name”)]

) ATTENTION: to simplify the macro interpretation, lines S
creates the variable Name. this: plify p , $ua

The scope of the created variable is global and there is notway qqout(“You can't do that // you cam't do thati®)
restrict the visibility of it.

When a variable is no more needed or desired, it can be release will generate an error as the interpreter will read only:

qgout ("You can't do that

MEMRELEASE(" cVarNamé') Sorry!

The variable declaration do not defines the variable typerEvari- . .
able may receive any kind of data; that is that the type depend Macro long lines split
the type of data contained.

«
Inside a nB macro, long lines may be splitted using ";" (seraic).

Macro structure Please note that: lines can only be splitted and not joinessuating

« command line cannot be longer then 254 characters.
A nB macro must be organised as follow. There may be two situa-
tions: Macros with procedures and macros without procedures The macro recorder .
Macro with procedures: Inside the functions ASSIST() and DOC() is available the Macr

recorder menu.

When a macro recording is started, a "&" appears on the le¢ét of
the status bar. It it blinks, the recording is active, if isigble, the
recording is paused.

1152 1153

The macro recording is not exactly a step-by-step recordiral
action taken, but a translation (as good as possible) of ydwahave
done.

The macro recorder is able to record only the menu functibast t
terminates with the "&" symbol and all what is inserted at thoe
command line.

The macro recording can be viewed and edited during thedeapr
The macro recording can be saved into a text file (a macro file).

Data types

The data types supported in the nB macro language are theasame
Clipper:

Array
Character
Code Block
Numeric
Date
Logical
Memo

NIL

Character

The character data type identifies character strings of d fergth.
The character set corresponds to: CHR(32) through CHR(@58)
the null character, CHR(0).

Valid character strings consist of zero or more charactéfsathe-
oretical maximum of 65535 characters. The real maximum dime
sion depends on the available memory.

Character string constants are formed by enclosing a valitgsof
characters within a designed pair of delimiters. There lameet pos-
sible delimiter pairs:

two single quotes lik& string_constant ’;

two double quotes like" string_constant ’;

left and right square brackets likestring_constant .

These three different kind of delimiters are available smtee some
possible problems:

I don’t want it -> "I don’t want it"

She said, "I love hin" ->'She said, "l love hin"

He said, "l don’t want it" -> [He said, "l don’t want it"]

The following table shows all operations available insidz for
character data types. These operations act on one or maertdma
expressions and the result is not necessarily a charadeetyqee.

+ Concatenate.
- Concatenate without intervening spaces.
== Compare for exact equity.

1=, <> # Compare for inequity.

< Compare for sorts before

<= Compare for sorts before or same as.
> Compare for sorts after.

>= Compare for sorts after or same as.
= In line assign.

$ Test for substring existence.
ALLTRIM() Remove leading and trailing spaces.
ASC() Convert to numeric ASCII code equivalent.
AT() Locate substring position.

CTOD() Convert to date.

DESCEND() Convert to complemented form.
EMPTY() Test for null or blank string.
ISALPHA() Test for initial letter.

ISDIGIT() Test for initial digit.

ISLOWER() Test for initial lowercase letter.
ISUPPER() Test for initial uppercase letter.

1154

LEFT() Extract substring form the left.
LEN() Compute string length in characters.
LOWER() Convert letters to lowercase.
LTRIM() Remove leading spaces.
PADC() Pad with leading and trailing spaces.
PADL() Pad with leading spaces.
PADR() Pad with trailing spaces.
RAT() Ir_igﬁfue substring position starting from the
RIGHT() Extract substring form the right.
RTRIM() Remove trailing spaces.
SOUNDEX() Convert to soundex equivalent.
SPACE() Create a blank string of a defined length.
STRTRAN() Search and replace substring.
STUFF() Replace substring.
SUBSTR() Extract substring.
TRANSFORM() Convert to formatted string.
UPPER() Convert letters to uppercase
VAL() Convert to numeric.
VALTYPE() Evaluates data type directly.
Memo

«
The memo data type is used to represent variable lengthakara
data that can only exist in the form of a database field.

Memo fields are not stored inside the main database file (.DBF) b
inside a separate file (.DBT).

A memo field can contain up to 65535 characters, that is theesam
maximum dimension of character fields. In fact, originalBases,
couldn’t have character string longer than 254 characters.

As here memo fields are very similar to long character stripgs
may forget that there is a difference.

All the operations that may be applied to character stringsy be

used with memo fields; the following functions may be use espe
cially for memo fields or long character strings.

HARDCR() Replace soft with hard carriage returns.
MEMOEDIT() Edit contents.
MEMOLINE() Extract a line of a text.
MEMOREAD() Read form a disk text file.
MEMOTRAN() Replace soft and hard carriage returns.
MEMOWRIT() Write to disk text file.
MLCOUNT() Count lines.
MLPOS() Compute position.

Date

«

The date data type is used to represent calendar dates.

Supported dates are from 0100.01.01 to 2999.12.31 andrhlfiok
date.

The appearance of a
SETVERB("'DATEFORMAT"). The default is "dd/mm/yyyy"
and it may easily changed for example with
SETVERB("DATEFORMAT", "MM/DD/YYYY") to the US stan-
dard.

There is no way to represent date constants; these must laeedp
with the CTOD() function. For example if the date 11/11/1%9%
be written, the right way is:

date is controlled from

[[croo("11/11/1995") |

The character string "11/11/1995" must respect the datedbde-
fined as before explained.

The function CTOD() will accept only valid dates, and nultela

[orax ™) \
A null date is ever less than any other valid date.

The following table shows all operations available insi@for date
data types. These operations act on one or more date expressid
the result is not necessarily a character data type.

1155

+ Add a number of days to a date.

- Subtract days to a date.

== Compare for equity.

1=, <> # Compare for inequity.

< Compare for earlier

<= Compare for earlier or same as.

> Compare for later.

>= Compare for later or same as.

= In line assign.

CDOW() Compute day of week name.

CMONTH() Compute month name.

DAY() Extract day number.

DESCEND() Convert to complemented form.

DOW() Compute day of week.
Convert to character string with the fq

DTOC() mat defined with SETVERB("DATEFOR
MAT").
Convert to character string in sorting fo

DOTOS() mat (YYYYMMDD).

EMPTY() Test for null date.

MONTH() Extract month number.

VALTYPE() Evaluates data type directly.

YEAR() Extract entire year number, including ce
tury.

Numeric

«

=
'

=
v

The numeric data type identifies real number. The theotetcme
is form 107-308 to 10"308 but the numeric precision is gugzaah
up to 16 significant digits, and formatting a numeric valuedigplay
is guaranteed up to a length of 32 (30 digits, a sign, and ardgci
point). That is: numbers longer than 32 bytes may be displage
asterisks, and digits other then most 16 significant onedispéayed

as zeroes.

Numeric constants are written without delimiters. Thedading are

valid constant numbers:

12345
12345.678
-156
+1256.789
-.789

If a numeric constant is delimited like character string®gicomes

a character string.

The following table shows all operations available insi@efor nu-
meric data types. These operations act on one or more numeric
pressions and the result is not necessarily a numeric daga ty

+ Add or Unary Positive.

- Subtract or Unary Negative.

* Multiply.

/ Divide.

% Modulus.

A, R Exponentiate.

== Compare for equity.

1=, <> # Compare for inequity.

< Compare for less than.

>= Compare for less than or equal.
> Compare for greater than.

>= Compare for greater than or equal.
= In line assign.

ABS() Compute absolute value.

CHR() Convert to ASCII character equivalent.
DESCEND() Convert to complemented form.
EMPTY() Test for zero.

EXP() Exponentiate with e as the base.
INT() Convert to integer.

LOG() Compute natural logarithm.
MAX() Compute maximum.

MIN() Compute minimum.

1156

ROUND() Round up or down()
SQRT() Compute square root.
STR() Convert to character.
TRANSFORM() Convert to formatted string.
VALTYPE() Evaluates data type directly.

Number appearence may be affected by SETVERB("FIXED")
and consequently by SETVERB("DECIMALS"). If
SETVERB("FIXED") is True, numbers are displayed with a fixed
decimal position. The number of decimal positions is defined
by SETVERB("DECIMALS"). For that reason, the default is
SETVERB("FIXED", .F.) and SETVERB("DECIMALS", 2), that
is, no fixed decimal position, but if they will be activatedetdefault

is two decimal digits.

Logical
«

The logical data type identifies Boolean values.

Logical constants are:

LT True.

L F. False.

When editing a logical field, inputs may be:
y, Y.t T for True
n,N,f F for False

The following table shows all operations available insi@eor log-
ical data types. These operations act on one or more logipats-
sions and the result is not necessarily a logical data type.
.AND. And.

.OR. Or.

.NOT. or ! Negate.

== Compare for equity.

Compare for inequity.

Comparing two logical values, False k. *) is always less than True
C.T.).
NIL

«
NIL is not properly a data type, it represent the value of amitn
tialised variable.

Inside nB (like what it happens inside Clipper), variables aot
declared with the data type that they will contain. This neetivat
a variable can contain any kind of data. In fact, nB variafales
pointer to data and a pointer to "nothing" is NIL.

NIL may be used as constant for assignment or comparing parpo

[N]
Fields (database fields) cannot contain NIL.
The following table shows all operations available insi@efor the

NIL data type. Except for these operations, attempting &raig on
a NIL results in a runtime error.

== Compare for equity.

I=, <> # Compare for inequity.

< Compare for less than.

<= Compare for less than or equal.

> Compare for greater than.

>= Compare for greater than or equal.
= In line assign.

EMPTY() Test for NIL.

VALTYPE() Evaluates data type directly.

For the purpose of comparison, NIL is the only value that iseétp
NIL. All other values are greater than NIL.

Variables are created inside nB with MEMPUBLIC(). This fuocti
creates variables which will be automatically initialiged\NIL.

1157

«

Array

The array data type identifies a collection of related d&ast that
share the same name. Each value in an array is referred to as ¢
element.

A[2,2] or A[2][2] contains 4
A[1,1] is an error!

The following table shows all operations available insi@efor ar-
rays.

Array elements can be of any data type except memo (memoils ava A_ADD 0 :: dl(ljng ?]‘:'r?iz;d” ah elementio an ara
able only inside database fields). For example the first eiecan ACLONE() Creaté/a copy 0% anaray. y
be a character string, the second a number, the third a ddtecan Copy element by element an array to an-
on. Arrays can contain other arrays and code blocks as etsmen ACOPY() other.
The variable containing the array does not contains theesatiay, ADEL() Delete one element inside an array.
but the reference to it AFILL() Fill all array elements with a value.
' AINS() Insert an element inside an array.
ARRAY() Creates an array of empty elements.

When the NIL type was described, it was cleared that variable ASCAN() 2“," the array elements.

doesn’t contains real data, but pointer to data. But thipbap ASIZE() €size an array.

. . . - - ASORT() Sort the array elements.

in a transparent way, that is that when the a variable is aeditp EMPTY() Testfor no elements

ar_10ther _(for example A :=B) the variable receiving the mgnt VALTYPE() Evaluates data type directly.

will receive a pointer to a new copy of the source data. Thim

the same with arrays: assigning to a variable an array, 84l

4 gning Y, iR Code block

to that variable a pointer to the same source array and natéw:
copy of it.

If arrays are to be duplicated, the ACLONE() function is toused.

An array constant may be expressed using curly bracketsgg.tBe
examples below.

A ;= { "first_element, " second_elemefit " third_element }

With this example, the variable A contain the reference taumay
with three element containing character string.

A[1] == "first_element
Al 2] == "second_elemerit
Al 3] == "third_element

Arrays may contain also no element: empty array and may be ex-
pressed as:

L0 \
The array element is identified by a number enclosed withrequa
brackets, following the variable nhame containing the rsfee to
the array. The first array element is one.

If an array contains arrays, we obtain a multidimensionayarFor
example:

[A:={{1 2} {3 4} {5 6}}]

is equivalent to the following table.

With this example, the variable A contain the reference tada b
mensional array containing numbers.

A[1,1] or A[1][1] contains 1
A[1,2] or A[1][2] contains 2
A[2,1] or A[2][1] contains 3
and so on.

As arrays may contain mixed data, it is the user who have tdlean
correctly the element numbers. For example:

‘ A= { "hello", {3, 4}, 1234}
‘A[l] == "hell 0"

‘ A2] == reference to { 3, 4 }

| Al3] == 1234

A[2,1] or A[2][1] contains 3
1158

«
The code block data type identifies a small piece of execefaitul-
gram code.

A code block is something like a little user defined functioimene
only a sequence of functions or assignments may appear.ops,lo
no IF ELSE END.

A code block may receive argument and return a value aftezuexe
tion, just like a function.

The syntax is:

{] [argument_lis] | exp_list }

That is: theargument_listis optional; theexp_listmay contain one
or more expressions separated with a comma.

For example, calling the following code block will give theisg
"hello world" as result.

[{11 _"helTo worid" } |

The following code block require a numeric argument an rettine
number passed as argument incremented:

[{Ininy |

The following code block requires two numeric arguments ed
turns the sum of the two square radix:

[{ I nFirst, nsecond | SQRT(nFirst) + SQRT(nSecond) } |
But code blocks may contains more expressions and the m#shi
execution of the code block is the result of the last expoessi

The following code block executes in sequence some furstoml
give ever "hello world" as a result.

‘ {| a b | functionOne(a), functionTwo(b), "hello world" } ‘
To start the execution of a code block a function is used: EYAL

For example, a code block is assigned to a variable and then ex
cuted.

[B:={1l "hello world" }]
EVAL(B) == "hello world"
Another example with a parameter.

[B:={1 nl na1}
EVAL(B, 1) ==
Another example with two parameters.

‘ B := { | nFirst, nSecond | SQRT(nFirst) + SQRT(nSecond) }
EVAL(B, 2,4)==20
And so on.

The following table shows some operations available insiéor
code blocks: many functions use code blocks as argument.

1159

«

= In line assign.
Evaluate (execute) a code block for each
ABVAL) elementin an array.
Convert (compile) a character string intg a
BCOMPILEQ code bIoE:k Pie) ’
DBEVAL() Evaluate (execute) a code block for each
record in the active alias.
EVAL() Evaluate a code block once.
VALTYPE() Evaluates data type directly.
Operators

Here is a list with a brief description of the operators aali inside
nB.

cStringl $ cString2

Substring comparison.
If cStringlis contained insideString2 the result is true‘(T.).

nNumberl % nNumber2

Modulus.
The result is the remainder aNumberldivided bynNuber2.

‘()

Function or grouping indicator.

nNumberl * nNumber2

Multiplication.

‘ nNumberl ** nNumber2
nNumberl * nNumber2

Exponentiation.

‘ nNumberl + nNumber2
dDate + nNumber

Addition, unary positive.

cStringl + cString2

String concatenation.

The result is a string beginning with the contentaS8tringl and
following with the content ot String2.

nNumberl - nNumber2
dDatel - dDate2
dDate - nNumber

Subtraction, unary negative.

cStringl - c¢String2

String concatenation.

The result is a string containingStringl after trimming trailing
blanks andcString2.

idAlias- >idField
FI ELD- >idVar
MEMVAR- >idVar

Alias assignment.
The alias operator implicitly SELECTSs tlieAlias before evaluating

idField. When the evaluation is complete, the original work area is

SELECTed again.
1160

ICondition1 . AND. ICondition2

Logical AND.

. NOT. ICondition

Logical NOT.

ICondition1 . OR. ICondition2

Logical OR.

nNumberl / nNumber2

Division.

object messagg(argunent list)]

Send.

idvar : = exp

Inline assign.

expl <= exp2

Less than or equal.

expl <> exp2

Not equal.
expl = exp2
Equal.
expl == exp2

Exactly equal.

expl > exp2

Greater than.

expl >= exp2

Greater than or equal.

@dVar

Pass-by-reference.

[l
aArray[nSubscript]
aArray[nSubscript] [nSubscript] ...

Array element indicator.

Delimiters

«
Here is the delimiter list recognised from nB.

‘ { exp_list }

Literal array delimiters.

‘ { | param_lis{ exp_list }

Code block delimiters.

1161

«

«

" cString"

' cString’

[cString]
String delimiters.
Code blocks

A code block is a sequence of function, assignments and aoinst
like the following:

‘ sqrt(10)
| nResult := 10 * nl ndex

Suppose that the above sequence of operations has a meaning f
you. We want to create a box containing this sequence of tpera
This box is contained inside a variable:

[bBl ackBox := { || sqrt(10),
Note the comma used as separator.

Now bBlackBox contains the small sequence seen before. To exe-
cute this sequence, the function EVAL() is used:

nResult := 10 » nlndex }]

[EVAL(bBI ackBox)]

The execution of the code block gives a result: the value efakt
operation contained inside the code block. In this caseligsesult

of 10*nindex. For that reason, if the execution of the code block
must give a fixed result, it can terminate with a constant.

A code block may receive parameters working like a functi®ry.
to imagine that we need to do the following.

function multiply(nvarl, nvar2)
return nvar * nVar2
| endf uncti on

A code block that does the same is:

bMmultiply := { | nvarl, nVar2 | nvarl *+ nvar2 }

To evaluate it, for example trying to multiply 10 * 5:

I nResul t = EVAL(bMiltiply, 10, 5)]

andnResultwill contain 50.
Standard functions

With nB all Clipper standard functions may be used. Herefed a
short description.

AADDQ
Array add

AADD(aTarget expValug = Value

aTarget
expValue

is the array to add a new element to.
is the value assigned to the new element.

It increases the actual length of the target array by one. nEdy
created array element is assigned the value specifiexpyalue

ABSQ

Absolute

ABS(nExp) = nPositive

[nExp [is the numeric expression to evaluate. |

ABS() returns a number representing the absolute values @ifrgu-
ment.

ACLONEQ

Array clone

ACLONE(aSourcg = aDuplicate

1162

[aSource [is the array to duplicate.

ACLONE() returns a duplicate afSource
ACOPY()

«

Array copy

‘ ACOPY(aSource aTarget,

[nStan] , [nCount] ,

aSource
aTarget

[nTargetPo}) = aTarget

is the array to copy elements from.
is the array to copy elements to.

is the starting element position in the
aSourcearray. If not specified, the default

value is one.
is the number of elements to copy from the

aSourcearray beginning at theStart po-
sition. If nCount is not specified, all ele-
ments inaSourcebeginning with the start-
ing element are copied.
is the starting element position in the
aTarget array to receive elements fro
aSource If not specified, the default valy
is one.

nStart

nCount

nTargetPos

@ 3

ACOPY() is an array function that copies elements from the
aSourcearray to theaTargetarray. TheaTargetarray must already
exist and be large enough to hold the copied elements.

ADELO

«

Array delete

ADEL(aTarget nPosition) = aTarget

aTarget is the array to delete an element from.
" is the position of the target array element
nPosition
to delete.

ADEL() is an array function that deletes an element from aayar
The contents of the specified array element is lost, and ethehts
from that position to the end of the array are shifted up oemeht.
The last element in the array becomes NIL.

AEVALQO

«
Array evaluation

‘ AEVAL(aArray, bBlock,
[nStarT] , [nCount]) = aArray

aArray is the array to be evaluated.

is a code block to execute for each element
bBlock

encountered. _

is the starting element. If not specified, the
nStart ;

default is element one.

is the number of elements to process from
nCount nStart. If not specified, the default is all

elements to the end of the array. 1

AEVAL() is an array function that evaluates a code block oftze
each element of an array, passing the element value anceine et
index as block parameters. The return value of the blocknisried.
All elements inaArray are processed unless either tifgtart or the
nCountargument is specified.

AFILLO

«

Array fill

‘ AFI LL(aTarget expValug
[nStan] , [nCount]) = aTarget

1163

aTarget is the array to fill.
is the value to place in each array element.
It can be an expression of any valid data
type.
is the position of the first element to fill. |
this argument is omitted, the default value

is one. . .
is the number of elements to fill starting

with elementnStart. If this argument ig
omitted, elements are filled from the start-
ing element position to the end of the array.

expValue

nStart

nCount

AFILL() is an array function that fills the specified array v sin-
gle value of any data type (including an array, code block\ihr)
by assigningexpValueto each array element in the specified range.

AINSQ

Array insert

Al NS(aTarget, nPosition) = aTarget

aTarget is the array into which a new element wiill
be inserted. i
" is the position at which the new element
nPosition .)
will be inserted.

AINS() is an array function that inserts a new element intpecs
fied array. The newly inserted element is NIL data type untiees
value is assigned to it. After the insertion, the last elehierihe
array is discarded, and all elements after the new elemerstréfted
down one position.

ALERTO

ALERT(cMessage [aOptioni) = nChoice

is the message text displayed, centered, in
the alert box. If the message contains one
cMessage or more semicolons, the text after the semi-
colons is centered on succeeding lines in
the dialog box.
) defines aTist of up to 4 possible responses
aOptions .
to the dialog box.

ALERT() returns a numeric value indicating which option ved®-

sen. If the Esc key is pressed, the value returned is zero. The
ALERT() function creates a simple modal dialog. The userrean
spond by moving a highlight bar and pressing the Return oc&pa
Bar keys, or by pressing the key corresponding to the firsref

the option. IfaOptionsis not supplied, a single "Ok" option is pre-
sented.

ALIASO

ALl AS([nWorkArea]) = cAlias

| nWorkArea [is any work area number. |

ALIAS() returns the alias of the specified work area as a dtara
string. If nWorkArea s not specified, the alias of the current work
area is returned. If there is no database file in USE for theifipe
work area, ALIAS() returns a null string ().

ALLTRIMO

ALLTRI M cString) = cTrimmedString

| cString | is the character expression to trim. |

ALLTRIM() returns a character string with leading and tnagi
1164

spaces removed.

ARRAY()

«

ARRAY(nEIements[, nEIements.]) = aArray

is the number of elements in the specified

‘ nElements . .
dimension.

ARRAY () is an array function that returns an uninitializedey with
the specified number of elements and dimensions.

ASCO
«

ASCII

‘ ASC(cExp) = nCode

‘ CExp is the character expression to convert tF a

number.

ASC() returns an integer numeric value in the range of ze@5,
representing the ASCII value cExp.

ASCANQ

«

Array scan

‘ ASCAN(aTarget, expSearch
[nStarq , [nCount]) = nStoppedAt

aTarget is the array to scan.
is either a simple value to scan for, of a
code block. IfexpSearchs a simple value
it can be character, date, logical, or nu-
meric type.
is the starting element of the scan. If this
argument is not specified, the default start-
ing position is one.
is the number of elements to scan from the
starting position. If this argument is npt
specified, all elements from the starting el-
ement to the end of the array are scanned.

expSearch

nStart

nCount

ASCAN() returns a numeric value representing the arraytjposof
the last element scanned.dkpSearchis a simple value, ASCAN()
returns the position of the first matching element, or zeeorifatch
is not found. IfexpSearchis a code block, ASCAN() returns the
position of the element where the block returned tru& ().

ASIZEQ

«

Array size

ASI ZE(aTarget, nLength) = aTarget

aTarget
nLength

is the array to grow or shrink.
is the new size of the array.

ASIZE() is an array function that changes the actual lengtthe
aTargetarray. The array is shortened or lengthened to match the
specified length. If the array is shortened, elements atrileéthe
array are lost. If the array is lengthened, new elementsddedto

the end of the array and assigned NIL.

ASORTQ

«
Array sort

‘ ASORT(aTarget, [nStarq ,
[nCounT] , [bOrdefl) = aTarget

[aTarget [is the array to sort.

1165

is the first element of the sort. If not speci-
fied, the default starting position is one.
is the number of elements to sort. If o
specified, all elements in the array begjin-
ning with the starting element are sorted.
is an optional code block used to determjne
sorting order. If not specified, the default
order is ascending.

nStart

=3

nCount

bOrder

ASORT() is an array function that sorts all or part of an arap-

taining elements of a single data type. Data types that caotted

include character, date, logical, and numeric. If B@rder argu-

ment is not specified, the default order is ascending. Each tihe
block is evaluated, two elements from the target array assqzhas
block parameters. The block must return truer(") if the elements
are in sorted order.

ATO

AT(cSearch cTargef) = nPosition

is the character substring for which to
cSearch

search. _
cTarget is the character string to search.

AT() returns the position of the first instance oSearch within
cTargetas an integer numeric value. ¢Searchis not found, AT()
returns zero.

AT() is a character function used to determine the positidhefirst
occurrence of a character substring within another string.

ATAILO
Array TAIL

ATAI L(aArray) = Element

[aArray [is the array. \

ATAIL() is an array function that returns the highest nungzkel-
ement of an array. It can be used in applications as shortftand
aArray[LEN(aArray)] when you need to obtain the last element of
an array.

BIN2I()

Binary to integer

BI N2I (cSignedin) = nNumber

is a character string in the form of a 16-
bit signed integer number--least significant
byte first.

cSignedInt

BIN2I() returns an integer obtained converting the first twte con-
tained insidecSignedint

BIN2LO

Binary to long

Bl N2L(cSignedInf) = nNumber

is a character string in the form of a 32-
bit signed integer number--least significant
byte first.

cSignedint

BIN2L() returns an integer obtained from the first tour clotees
contained incSignedInt

1166

BIN2WO
«

Binary to word

BI N2W(cUnsignedinf = nNumber

=

is a character string in the form of a 16-bi
unsigned integer number--least significant
byte first.

cUnsignedint

BIN2W/() returns an integer obtained from the first two cheec
contained incSignedint

BOFO

«

Begin of file

BOF() = IBoundary

BOF() returns true‘(T.’) after an attempt to SKIP backward be-
yond the first logical record in a database file; otherwisegtiirns
false (. F.’). If there is no database file open in the current work
area, BOF() returns false. F. ’). If the current database file con-
tains no records, BOF() returns trueT. *).

CDOW(Q
«
Character day of week

CDOW dExp) = cDayName

[dExp | is the date value to convert. |

CDOW() returns the name of the day of the week as a characte
string. The first letter is uppercase and the rest of thegstsiow-
ercase. For a null date value, CDOW() returns a null strifig ("

CHRO

Character

‘ CHR(nCode = cChar

is an ASCII code in the range of zero [to

‘ nCode 255,

CHR() returns a single character value whose ASCII codeesisp
fied bynCode

CMONTHQO
«
Character month

CMONTH(dDate) = cMonth

[dDate is the date value to convert. |

CMONTHY() returns the name of the month as a character strarg fr
a date value with the first letter uppercase and the rest dfttirey
lowercase. For a null date value, CMONTH() returns a nulhstri

")
COLO

«

Column

COL() = nCol

COL() is a screen function that returns the current colunsitjom of
the cursor. The value of COL() changes whenever the cursitigo
changes on the screen.

1167

COLORSELECTO

«

DBCLEARFILTERQ)

«

COLORSELECT(nColorindex) = NIL

‘ DBCLEARFI LTER() = NIL

positions in the current list of color
tributes, as set by SETCOLOR().

is a number corresponding to the ordihal
nColorindex

COLORSELECT() activates the specified color pair from theemnt
list of color attributes (established by SETCOLOR()).

CTODO

«

Character to date

CTOD(cDate) = dDate

is a character string consisting of numbgrs
representing the month, day, and year sep-
arated by any character other than a num-
ber. The month, day, and year digits must
be specified in accordance with the SET
DATE format. If the century digits are not
specified, the century is determined by the
rules of SET EPOCH.

cDate

CTOD() returns a date value. ¢tDateis not a valid date, CTOD()
returns an empty date.

CURDIRO

Current directory

CURDI R([cDrivespe}) = cDirectory

specifies the letter of the disk drive o
query. If not specified, the default is the
current DOS drive.

cDrivespec

CURDIR() returns the current DOS directory of the drive sfied
by cDrivespecas a character string without either leading or trailing
backslash (\) characters.

DATEQ

DATE() = dSystemDate
DATE() returns the system date as a date value.

DAY(Q

DAY(dDate) = nDay

| dDate [is a date value to convert.

DAY () returns the day number fromiDate
DBAPPENDQ

DBAPPEND([IReIeaseRecLocl]s) = NIL

is a logical data type that if true
(. T."), clears all pending record locks,
then appends the next record. If
IReleaseRecLocksis false (.F.’), all
pending record locks are maintained and
the new record is added to the end|of
the Lock List. The default value of
IReleaseRecLocks true (. T. ’).

IReleaseRecLocks

DBAPPEND() adds a new empty record to the active alias.

1168

DBCLEARFILTER() clears the logical filter condition, if anyor
the current work area.

DBCLEARINDEXQ

«
‘ DBCLEARI NDEX() = NIL

DBCLEARINDEX() closes any active indexes for the activeaali
DBCLEARRELATIONQO

«

‘ DBCLEARRELATI ON() = NIL

DBCLEARRELATION() clears any active relations for the aeti
alias.

DBCLOSEALLO

«

‘ DBCLOSEALL() = NIL

DBCLOSEALL() releases all occupied work areas from uses It i
equivalent to calling DBCLOSEAREA() on every occupied work
area.

Attention: DBCLOSEALL() cannot be used inside a "compiled"
macro as this will stop the macro execution. In substitytDB-
CLOSE() should be used.

DBCLOSEAREAQ

«
‘ DBCLOSEAREA() = NIL
DBCLOSEAREA() releases the current work area from use.

DBCOMMITO

«

‘ DBCOMM T() = NIL

DBCOMMIIT() causes all updates to the current work area to be wri
ten to disk. All updated database and index buffers are emritb
DOS and a DOS COMMIT request is issued for the database (.dbf
file and any index files associated with the work area. Insideta
work environment, DBCOMMIT() makes database updates visible
to other processes. To insure data integrity, issue DBCOMMIT(
before an UNLOCK operation.

DBCOMMITALLO

«

DBCOWM TALL() = NIL

DBCOMMITALL() causes all pending updates to all work areas to
be written to disk. Itis equivalent to calling DBCOMMIT() fovery
occupied work area.

DBCREATEQ

«

DBCREATE(cDatabase aStruct, [cDriver]) = NIL

is the name of the new database file, with
an optional drive and directory, specified
as a character string. If specified without
an extension (.dbf) is assumed.

cDatabase

1169

«

is an array that contains the structure| of
cDatabaseas a series of subarrays, one per
field. Each subarray contains the definition
of each field's attributes and has the fol-

aStruct lowing structure:

aStruct[n][1] == cName

aStruct[n][2] == cType

aStruct[n][3] == nLength

aStruct[n][4] == nDecimals

specifies the replaceable database driver
cDriver (RDD) to use to process the current work

area. cDriver is name of the RDD specj-
fied as a character expression.

DBCREATE() is a database function that creates a databageoiih
an array containing the structure of the file.

DBCREATEINDEXO

DBCREATEI NDEX(cindexName cKeyExpr, bKeyExpr, [IUnique])

= NIL

is a character value that specifies the fjle-
clndexName name of the index file (order bag) to be cfe-

ated.

is a character value that expresses the index
cKeyExpr s

key expression in textual form.

is a code block that expresses the index key
bKeyExpr S

expression in executable form.

is an optional logical value that specifies
lUnique whether a unique index is to be created.

a If lUnique is omitted, the current global
_SET_UNIQUE setting is used.

DBCREATEINDEX() creates an index for the active alias. léth
alias has active indexes, they are closed.

DBDELETEQ

DBDELETE() = NIL

DBDELETE() marks the current record as deleted (*). Records
marked for deletion can be filtered using SET DELETED or re-
moved from the file using the PACK command.

DBEVALO

DB evaluate

DBEVAL (bBlock,
[bForCondition] ,
[bwhileConditior] ,
[nNextRecord} s
nRecor
|Res]) = NIL

is a code block to execute for each recprd
bBlock

processed. .
bForCondition g:kaFOR condition expressed as code
bWhileCondition g;(e)c\li\/HlLE condition expressed as code

is an optional number that specifies the
number of records to process starting with
the current record. It is the same as the

NEXT clause.
is an optional record number to process.

If this argument is specifiechBlock will
be evaluated for the specified record. This
argument is the same as the RECORD

clause. . .
is an optional logical value that determines

whether the scope of DBEVAL() is all
records, or, starting with the currentreco
all records to the end of file.

1170

nNextRecords

nRecord

IRest

&

DBEVAL() is a database function that evaluates a single lbfoc
each record within the active alias.

DBFILTERO

«

DBFI LTER() = cFilter

BFILTER() returns the filter condition defined in the currevdrk
area as a character string. If no FILTER has been SET, DBAR(JE
returns a null string (").

DBGOBOTTOMO)

«

‘ DBGOBOTTOM) = NIL
DBGOBOTTOMY() moves to last logical record in the active alias
DBGOTO0

«

‘ DBGOTQ(nRecordNumbey = NI L

is a numeric value that specifies the recFrd

‘ nRecordNumber number of the desired record.

DBGOTO() moves to the record whose record number is equal to
nRecordNumber If no such record exists, the work area is posi-
tioned to LASTREC() + 1 and both EOF() and BOF() return true
C.T.°).

DBGOTOP()

«

‘ DBGOTOP() = NIL

DBGOTOP() moves to the first logical record in the current kvor
area.

DBRECALLO

«

‘ DBRECALL() = NIL

DBRECALL() causes the current record to be reinstated ifit i
marked for deletion.

DBREINDEXQ

«

‘ DBREI NDEX() = NIL

DBREINDEX() rebuilds all active indexes associated wité Httive
alias.

DBRELATIONQ

«

‘ DBRELATI ON(nRelation) =- cLinkExp

is the position of the desired relation in tre

‘ nRelation : - .)
list of active alias relations.

DBRELATION() returns a character string containing theiig
expression of the relation specified bRRelation. If there is no RE-
LATION SET for nRelation, DBRELATION() returns a null string

™).
DBRLOCKO

«

DB record lock

‘ DBRLOCK([nRecNt]) = ISuccess

is the record number to be locked. The ?e-

‘ nRecNo fault is the current record.

1171

«

DBRLOCK() is a database function that locks the record iifient
by nRecNoor the current record.

DBRLOCKLISTO

DBRLOCKLI ST() = aRecordLocks

DBRLOCKLIST() returns a one-dimensional array of the latke
records in the active alias.

DBRSELECT(O

DB relation select

DBRSELECT(nRelation) = nWorkArea

. is the position of the desired relation in the
nRelation

list of current work area relations.

DBRSELECT() returns the work area number of the relatiorcspe
fied by nRelation as an integer numeric value. If there is no RELA-
TION SET fornRelation, DBRSELECT() returns zero.

DBRUNLOCKQO

DB relation unlock

DBRUN_OOK([nRech) = NIL

is the record number to be unlocked. The

nRecNo default is all previously locked records.

DBRUNLOCK() is a database function that unlocks the recdesht
tified by nRecNoor all locked records.

DBSEEKO

DBSEEK(expKey [ISoﬂSeeE) = IFound

is a value of any type that specifies the key

expKe
prey value associated with the desired record.
is an optional logical value that specifies
whether a soft seek is to be performed.
This determines how the work area is po-
ISoftSeek

sitioned if the specified key value is not
found. If ISoftSeekis omitted, the current
global _SET_SOFTSEEK setting is used.

DBSEEK() returns true (T.) if the specified key value was found;
otherwise, it returns false.(F. *).

DBSELECTAREAQ

DBSELECTAREA(nArea | cAlias) = NIL

is a numeric value between zero and 250,
inclusive, that specifies the work area bejng

selected. .
is a character value that specifies the alias

of a currently occupied work area being se-
lected.

nArea

cAlias

DBSELECTAREA() causes the specified work area to become the

current work area. All subsequent database operationgapplly to
this work area unless another work area is explicitly spetifor an
operation.

DBSETDRIVERO)

DBSETDRI VER([cDriver]) = cCurrentDriver

1172

is an optional character value that specifies
the name of the database driver that should
be used to activate and manage new work
areas when no driver is explicitly specified.

cDriver

DBSETDRIVER() returns the name of the current default drive
DBSETFILTERO)

«

‘ DBSETFI LTER(bCondition, [cCondilion]) = NL

is a code block that expresses the filter con-

bCondition N
dition in executable form.
is a character value that expresses the filter
condition in textual form. IfcCondition
cCondition is omitted, the DBSETFILTER() function

-~

will return an empty string for the worl
area.

DBSETFILTER() sets a logical filter condition for the curtevork
area. When a filter is set, records which do not meet the fitiar c
dition are not logically visible. That is, database ope@radi which
act on logical records will not consider these records. Tiker &x-
pression supplied to DBSETFILTER() evaluates to tru@ (") if the
current record meets the filter condition; otherwise, itidti@valu-
ate to false‘(F.).

DBSETINDEXQO

«

‘ DBSETI NDEX(cOrderBagNam¢ = NI L

is a character value that specifies the fjle-
name of the index file (index bag) to be
opened.

cOrderBagName

DBSETINDEX() is a database function that adds the conteirési o
Order Bag into the Order List of the current work area. Any &sd
already associated with the work area continue to be actfvithe
newly opened Order Bag is the only Order associated with thré& w
area, it becomes the controlling Order; otherwise, therotimg
Order remains unchanged. If the Order Bag contains moredhan
Order, and there are no other Orders associated with the aveek
the first Order in the new Order Bag becomes the controllirdg©r

DBSETORDER(O

«

DBSETORDER(nOrderNum) = NI L

nOrderNum the active indexes is to be the controlling

is a numeric value that specifies whicth
index.

DBSETORDER() controls which of the active alias’ activeends
is the controlling index.

DBSETRELATIONQ

«

DBSETRELATI ON(nArea| cAlias, bExpr, [cExpr]) = NL

is a numeric value that specifies the wTrk
nArea

area number of the child work area.)
is a character value that specifies the alias

of the child work area.
is a code block that expresses the relational

expression in executable form.
is an optional character value that ex-
presses the relational expression in textual
form. If cExpr is omitted, the DBRELA-
TION() function returns an empty string
for the relation.

cAlias

bExpr

CExpr

1173

DBSETRELATIONY() relates the work area specified h#rea or
cAlias (the child work area), to the current work area (the parent
work area). Any existing relations remain active.

DBSKIP()

DBSKI P([nRecord}) = NIL

is the number of Togical records to move
relative to the current record. A positi
value means to skip forward, and a neg-
ative value means to skip backward. | If
nRecordsis omitted, a value of 1 is as-
sumed.

(0]

nRecords

DBSKIP() moves either forward or backward relative to therent
record. Attempting to skip forward beyond the last recordifiens
the work area to LASTREC() + 1 and EOF() returns truer(’).
Attempting to skip backward beyond the first record posgitime
work area to the first record and BOF() returns trug ().

DBSTRUCTO

DBSTRUCT() = aStruct

DBSTRUCT() returns the structure of the current databaserfibn
array whose length is equal to the number of fields in the @dab
file. Each element of the array is a subarray containing méion
for one field. The subarrays have the following format:

aStruct[n][1] == cName
aStruct[n][2] == cType
aStruct[n][3] == nLength
aStruct[n][4] == nDecimals

If there is no database file in USE in the current work area, DB-
STRUCT() returns an empty array ({}).

DBUNLOCKO

DBUNLOCK() = NIL

DBUNLOCK() releases any record or file locks obtained by tive ¢
rent process for the current work area. DBUNLOCK() is onlyame
ingful on a shared database in a network environment.

DBUNLOCKALLO

DBUNLOCKALL() = NIL

DBUNLOCKALL() releases any record or file locks obtained by
the current process for any work area. DBUNLOCKALL() is only
meaningful on a shared database in a network environment.

DBUSEAREAQ

DBUSEAREA([INeWArea] , [cDriver] X
[ISharec] s [IReadonI)]) = NIL

cName [chIias] s

is an optional logical value. A value of true
(*. T.") selects the lowest numbered unoc-
cupied work area as the current work area
before the use operation. INewAreais
false (. F.) or omitted, the current work
area is used; if the work area is occupied,

itis closed first.
is an optional character value. If present,

it specifies the name of the database driver
which will service the work area. If
cDriver is omitted, the current default
driver is used.
1174

INewArea

cDriver

specifies the name of the database (.dbf)
file to be opened.
is an optional character value. If present, it
specifies the alias to be associated with|the
work area. The alias must constitute a valid
identifier. A valid xcAlias may be any le
gal identifier (i.e., it must begin with an
alphabetic character and may contain nu-
meric or alphabetic characters and the un-
derscore). IfxcAlias is omitted, a default

alias is constructed fromName)
is an optional logical value. If present,]it

specifies whether the database (.dbf) file
should be accessible to other processes on
a network. A value of true'(T.’) speci-
fies that other processes should be allowed
access; a value of falsé. €. ') specifies
that the current process is to have exclusive
access. [fiSharedis omitted, the current
global _SET_EXCLUSIVE setting deter-

mines whether shared access is allowed.
is an optional logical value that specifies

whether updates to the work area are pro-
hibited. A value of true‘(T. ') prohibits
updates; a value of false. €. ') permits
updates. A value of true‘.(T.’) also
permits read-only access to the specified
database (.dbf) file. IfReadonlyis omit-
ted, the default value is false €. ').

cName

xcAlias

IShared

IReadonly

DBUSEAREA() opens the specified database (.DBF).
DBDELETEQ

«

DELETED() = IDeleted

DELETED() returns true‘(T. ') if the current record is marked for
deletion; otherwise, it returns false E. '). If there is no database
file in USE in the current work area, DELETED() returns false

C.F.").
DESCEND(Q

«

‘ DESCEND(exp) = Valuelnverted

‘ exp is any valid expression of character, darte.

logical, or numeric type.

DESCEND() returns an inverted expression of the same da& ty
as theexp, except for dates which return a numeric value. A DE-
SCEND() of CHR(0) always returns CHR(0).

DEVOUTO

«

Device output

DEVOUT(exp, [cCoIorString]) = NIL

exp is the value to display.
. is an optional argument that defines the dis-
cColorString
play color ofexp.

DEVOUTY() is a full-screen display function that writes thalwe
of a single expression to the current device at the currersocwor
printhead position.

DEVOUTPICTO

«

Device output picture

DEVQUTPI CT(exp, cPicture, [cCoIorStrinq) = NIL

1175

«

«

exp is the value to display. |
Pict defines the formatting control for the dis-
cricture play of exp.

cColorString is an optional argument that defines the Tls-

play color ofexp.

DEVOUTPICTY() is a full-screen display function that writése
value of a single expression to the current device at thentiaursor
or printhead position.

DEVPOSQ

Device position

DEVPCS(nRow, nCol) = NI L

are the new row and column positions]of

nRow, nCol the cursor or printhead.

DEVPOS() is an environment function that moves the screen or

printhead depending on the current DEVICE.
DIRECTORY()

DI RECTORY(cDirSpeg [cAttributeq) = aDirectory

identifies the drive, directory and file spec-
ification for the directory search. Wild-
cards are allowed in the file specification.
If cDirSpecis omitted, the default value is

* *
specifies inclusion of files with special
attributes in the returned informatio
cAttributes is a string containing one @
more of the following characters:

H Include hidden files

S Include system files

D Include directories

V Search for the DOS volume label only|
Normal files are always included in t
search, unless you specify V.

cDirSpec

3

cAttributes

[0]

DIRECTORY/() returns an array of subarrays, with each sayarr
containing information about each file matchicigirSpec The sub-
array has the following structure:

aDirectory[n][1] == cName
aDirectory[n][2] == cSize
aDirectory[n][3] == dDate
aDirectory[n][4] == cTime
aDirectory[n][5] == cAttributes

If no files are found matchingDirSpecor if cDirSpecis an ille-
gal path or file specification, DIRECTORY() returns an emg}y (
array.

DISKSPACE(Q)

DI SKSPACE([nDrive]) = nBytes

is the number of the drive to query, where
oneisdrive A, two is B, three is C, etc. The
default is the current DOS drive ifDrive
is omitted or specified as zero.

nDrive

DISKSPACE() returns the number of bytes of empty space on the

specified disk drive as an integer numeric value.

1176

DISPBOXO

«

Display box

‘ DI SPBOX(nTop, nLeft, nBottom, nRight,
[anoxString] , [cCoIorString]) = NIL

:-I;?ght nLeft, nBottom, define the coordinates of the box.
is @ numeric or character expression that
defines the border characters of the box. If
specified as a numeric expression, a value
of 1 displays a single-line box and a value
cnBoxString of 2 displays a double-line box. All other

numeric values display a single-line box If
cnBoxString is a character expression,|it
specifies the characters to be used in draw-
ing the box. This is a string of eight border

characters and a fill character.)
defines the display color of the box that is

drawn.

cColorString

DISPBOX() is a screen function that draws a box at the specifie
display coordinates in the specified color.

DISPOUTO

«

Display out

DI SPOUT(exp, [cCoIorStrinq) = NIL

exp is the value to display.
is an optional argument that defines the dis-
play color ofexp.
is a character expression containing the
standard color setting.

cColorString

cColorString

DISPOUT() is a simple output function that writes the valdeao
single expression to the display at the current cursor iposifThis
function ignores the SET DEVICE setting; output always dodhe
screen.

DOWQO

«

Day of week

DOW dDate) = nDay

[dDate [is a date value to convert. \

DOW() returns the day of the week as a number between zero an
seven. The first day of the week is one (Sunday) and the lassday
seven (Saturday). diDateis empty, DOW() returns zero.

DTOCO

«
Date to character

DTOC(dDate) = cDate

[dDate is the date value to convert. |

DTOC() returns a character string representation of a ddteev The
return value is formatted in the current date format. A nuited
returns a string of spaces equal in length to the currentfdateat.

DTOSO

«

Date to sort

DTOS(dDate) = cDate

[dDate | is the date value to convert.

1177

DTOS() returns a character string eight characters longerfdarm,
yyyymmdd. WherdDateis a null date (CTOD("")), DTOS() returns
a string of eight spaces.

EMPTYQ

EMPTY(exp) = IEmpty

[exp [is an expression of any data type. |

EMPTY/() returns true‘(T. ") if the expression results in an empty
value; otherwise, it returns false €.):

Array 0
Character/Memo Spaces, tabs, CR/LF, or "™
Numeric 0
Date CTOD(™)
Logical TE
NIL NIL
EOFQ
End of file

EOF() = IBoundary

EOF() returns true‘(T.’) when an attempt is made to move the
record pointer beyond the last logical record in a databéeseotih-
erwise, it returns false .(F. '). If there is no database file open in
the current work area, EOF() returns falseR(’). If the current
database file contains no records, EOF() returns true ().

EVALO

Code block evaluation

EVAL(bBlock, [BIockArgilisT]) = LastBlockValue

bBlock is the code block to evaluate.
BlockArg_list is a list of arguments to send to the cade
- block before it is evaluated.

To execute or evaluate a code block, call EVAL() with the kloc
value and any parameters. The parameters are supplied iottie
when it is executed. Code blocks may be a series of expression
separated by commas. When a code block is evaluated, thaedtu
value is the value of the last expression in the block.

EXPO

Exponent

EXP(nExponen) =- nAntilogarithm

nExponent is the natural logarithm for which a m‘A-

meric value is to be calculated.

EXP() returns a numeric value that is equivalent to the valtesed
to the specified power.

FCLOSEQ

File close

FCLOSE(nHandle) = |Error

is the file handle obtained previously frjm

nHandle FOPEN() or FCREATE().

FCLOSE() is a low-level file function that closes binary filesd
forces the associated DOS buffers to be written to disk.dfdper-
ation fails, FCLOSE() returns false €.). FERROR() can then be
used to determine the reason for the failure.

1178

FCOUNTO

«

Field count

FCOUNT() = nFields

FCOUNT() returns the number of fields in the database file & th
active alias as an integer numeric value. If there is no dealfile
open, FCOUNT() returns zero.

FCREATEQ

«

Field create

FCREATE(cFile, [nAttribute]) = nHandle

is the name of the file to create. If the

cFile file already exists, its length is truncated to
zero without warning.
is the binary file attribute, the default vallie
is zero.
. nAttribute = 0 Normal (default
nAttribute ¢)

nAttribute = 1 Read-only
nAttribute = 2 Hidden
nAttribute = 4 System

FCREATE() returns the DOS file handle number of the new binary
file in the range of zero to 65,535. If an error occurs, FCREAQTE
returns -1 and FERROR() is set to indicate an error code.

FERASEQ

«

File erase

FERASE(cFile) = nSuccess

is the name (with or without path) of tl‘!e

‘ cFile file to be deleted from disk.

FERASE() is a file function that deletes a specified file froskdi
FERASE() returns -1 if the operation fails and zero if it seeds.

FERRORQO

«
File error

FERROR() = nErrorCode

FERROR() returns the DOS error from the last file operatioaras
integer numeric value. If there is no error, FERROR() redurero.

nErrorCode value Meaning

0 Successful

2 File not found

3 Path not found

4 Too many files open

5 Access denied

6 Invalid handle

8 Insufficient memory

15 Invalid drive specified
Attempted to write to a write-protected

19)
disk

21 Drive not ready

23 Data CRC error

29 Write fault

30 Read fault

32 Sharing violation

33 Lock Violation

FERROR() is a low-level file function that indicates a DOSoerr
after a file function is used.

1179

«

FIELDBLOCKO

FI ELDBLOCK(cFieldName) = bFieldBlock

- is the name of the field to which the set-get
cFieldName

block will refer.

FIELDBLOCK() returns a code block that, when evaluateds as-
signs) or gets (retrieves) the value of the given fielccAfeldName
does not exist in the current work area, FIELDBLOCK() return
NIL.

FIELDGETO

FI ELDGET(nField) = ValueField

is the ordinal position of the field in the

nField record structure for the current work area.

FIELDGET)() returns the value of the specified fieldnField does
not correspond to the position of any field in the current loiase
file, FIELDGET() returns NIL.

FIELDNAMEQO

) is the name of the field specified as a char-
cHeldName acter string.
is the work area number where the field fe-
nWorkArea sides specified as a numeric value.

FIELDWBLOCK() returns a code block that, when evaluateds se
(assigns) or gets (retrieves) the valueobieldNamein the work
area designated bywWorkArea. If cFieldNamedoes not exist in the
specified work area, FIELDWBLOCK() returns NIL.

FILEQ

«

FI LE(cFilespeg = IExists

=

is in the current default directory and pal
It is a standard file specification that can
include the wildcard characters * and ? |as
well as a drive and path reference.

cFilespec

FILE() returns true‘(T.) if there is a match for any file matching
the cFilespecpattern; otherwise, it returns false . *).

FLOCKO

«

File lock

FI ELDNAME(nPosition) = cFieldName

FLOCK() = ISuccess

" is the position of a field in the database Tle
nPosition

structure.

FIELDNAME() returns the name of the specified field as a charact
string. If nPosition does not correspond to an existing field in the
current database file or if no database file is open in the munrerk
area, FIELDNAME() returns a null string ("").

FIELDPOSO

Field position

FI ELDPOS(cFieldName) = nFieldPos

cFieldName is the name of a field in the current or spTc—

ified work area.

FIELDPOS() returns the position of the specified field witkie
list of fields associated with the current or specified wodaalf the
current work area has no field with the specified name, FIELB§O
returns zero.

FIELDPUTO

FI ELDPUT(nField, expAssign) = ValueAssigned

. is the ordinal position of the field in the
nField)
current database file. .)
is the value to assign to the given field. The
expAssign data type of this expression must match the
data type of the designated field variable.

FIELDPUT() is a database function that assign@Assignto the
field at ordinal positiomField in the current work area. This func-
tion allows you to set the value of a field using its positiothivi the
database file structure rather than its field name.

FIELDWBLOCKO

Field work area block

FI ELDMBLOCK(cFieldName, nWorkArea) = bFieldWBlock

1180

FLOCK() tries to lock the active alias and returns truer(’) if it
succeeds; otherwise, it returns falseq(*).

FOPENQ

«
File open

FOPEN(cFile, [nMod%) = nHandle

is the name of the file to open including the
path if there is one.
is the requested DOS open mode indicating
how the opened file is to be accessed. The
open mode is composed of the sum of two
elements: the Open mode and the Sharing
mode.

Open mode:

0 Open for reading (default)

1 Open for writing

2 Open for reading or writing
Sharing mode:

0 Compatibility mode (default)
16 Exclusive use

32 Prevent others from writing
48 Prevent others from reading
64 Allow others to read or write

cFile

nMode

FOPEN() returns the file handle of the opened file in the rarfge o
zero to 65,535. If an error occurs, FOPEN() returns -1.

FOUNDQO

«
FOUND() = ISuccess

FOUNDY() returns true‘(T.) if the last search command was suc-
cessful; otherwise, it returns false k. *).

FREADQ

. «
File read

FREAD(nHandle, @BufferVar, nByte§ = nBytes

is the file handle obtained from FOPENJ),
FCREATE(), or predefined by DOS.

1181

nHandle

is the name of an existing and initialized
character variable used to store data read
from the specified file. The length of this

cBufferVar variable must be greater than or equal to
nBytes cBufferVar must be passed by ref-
erence and, therefore, must be prefaced by
the pass-by-reference operator (@).

nBytes is the number of bytes to read into the

buffer.

FREAD() tries to readcnBytes of the binary filenHandle inside

cBufferVar. It returns the number of bytes successfully read as an

integer numeric value. A return value less thBytesor zero indi-
cates end of file or some other read error.

FREADSTRO

File read string

FREADSTR(nHandle, nByteg = cString

is the file handle obtained from FOPENJ),
nHandle FCREATE(), or predefined by DOS.
nBytes is the number of bytes to read, beginning at
the current DOS file pointer position.

FREADSTR() returns a character string up to 65,535 (64Kg¢&yA
null return value (") indicates an error or end of file. FREBDR()
is a low-level file function that reads characters from anndpieary
file beginning with the current DOS file pointer position. Glaters
are read up tmBytesor until a null character (CHR(0)) is encoun-
tered. All characters are read including control charaatecept for
CHR(0). The file pointer is then moved forwanBytes If nBytes
is greater than the number of bytes from the pointer posttiaine
end of the file, the file pointer is positioned to the last bytehie file.

FRENAMEQ

File rename

FRENAME(cOldFile, cNewFile) = nSuccess

is the name of the file to rename, including
the file extension. A drive letter and/or path
name may also be included as part of the

filename. . .
is the new name of the file, including the

file extension. A drive letter and/or path
name may also be included as part of the
name.

cOldFile

cNewFile

FRENAME() returns -1 if the operation fails and zero if it seeds.
FSEEKO

« i
File seek

FSEEK(nHandle, nOffset, [nOrigin]) = nPosition

is the file handle obtained from FOPEN(),
FCREATE(), or predefined by DOS.
is the number of bytes to move the
file pointer from the position defined by
nOrigin. It can be a positive or nega-
tive number. A positive number moves
the pointer forward, and a negative number
moves the pointer backward in the file.
defines the starting location of the file
pointer before FSEEK() is executed. The
default value is zero, representing the be-
ginning of file. If nOrigin is the end of
file, nOffset must be zero or negative.
Seek from beginning of file

Seek from the current pointer position

Seek from end of file
1182

nHandle

nOffset

nOrigin

nOrigin ==
nOrigin ==
nOrigin == 2

FSEEK() returns the new position of the file pointer relativehe
beginning of file (position 0) as an integer numeric valueisValue
is without regard to the original position of the file pointESEEK()
is a low-level file function that moves the file pointer fonaaor
backward in an open binary file without actually reading thietents
of the specified file. The beginning position and offset arecg@d
as function arguments, and the new file position is returned.

FWRITEQ

«

File write

FWRI TE(nHandle, cBuffer, [nBytei) = nBytesWritten

is the file handle obtained from FOPENJ),
FCREATE(), or predefined by DOS.
is the character string to write to the speci-

fied file. .
indicates the number of bytes to write Be-

ginning at the current file pointer position.
If omitted, the entire content afBuffer is
written.

nHandle

cBuffer

nBytes

FWRITE() returns the number of bytes written as an integenenc
value. If the value returned is equal tBytes the operation was
successful. If the return value is less thaBytesor zero, either the
disk is full or another error has occurred.

GETENVQ

«

Get environment

GETENV(cEnvironmentVariablg = cString

is the name of the DOS environment var
able. When specifying this argument, ypu
can use any combination of upper and lgw-
ercase letters; GETENV() is not case- sen-
sitive.

cEnvironmentVariable

GETENV() returns the contents of the specified DOS envirartme
variable as a character string. If the variable cannot bexdou
GETENV() returns a null string ("").

HARDCR()

«

Hard carriage return

‘ HARDCR(cString) = cConvertedString

‘ cString is the character string or memo field to C(Tn—

vert.

HARDCR() is a memo function that replaces all soft carriagfamns
(CHR(141)) with hard carriage returns (CHR(13)). It is usedis-
play long character strings and memo fields containing sofiage
returns with console commands.

HEADERQ

«

HEADER() = nBytes

HEADER() returns the number of bytes in the header of theetiirr
database file as an integer numeric value. If no databasesfite i
use, HEADER() returns a zero (0).

12BINO

«
Integer to binary

1 2Bl N(ninteger) = cBinaryInteger

1183

«

«

is an integer numeric value to convert.
ninteger

Decimal digits are truncated.

12BIN() returns a two-byte character string containing abli6bi-
nary integer.

IFO

[I] | F(ICondition, expTrue expFals§ = Value

is a logical expression to be evaluated.
is the value, a condition-expression, of any
data type, returned ifCondition is true
LT

i(s the)value, of any date type, returned i
ICondition is false (. F.). This argumen
need not be the same data typesapTrue

ICondition

expTrue

=

expFalse

IF() returns the evaluation @xpTrueif ICondition evaluates to true
(. T. ') andexpFalseif it evaluates to false'(F.).

INDEXEXTO

Index extention

I NDEXEXT() = cExtension

INDEXEXT() returns the default index file extension by detéring
which database driver is currently linked.

INDEXKEYQ

| NDEXKEY(nOrder) = cKeyExp

is the ordinal position of the index in
the list of index files opened by the Igst
USE.INDEX or SET INDEX TO com-
mand for the current work area. A zero
value specifies the controlling index, with-
out regard to its actual position in the list.

nOrder

INDEXKEY () returns the key expression of the specified indexa
character string. If there is no corresponding index or itlatabase
file is open, INDEXKEY/() returns a null string ("").

INDEXORD(O

Index order

| NDEXORD() = nOrder

INDEXORD() returns an integer numeric value. The valuenetd
is equal to the position of the controlling index in the ligtapen
indexes for the current work area. A value of zero indicatasthere
is no controlling index and records are being accessed iuralat
order. If no database file is open, INDEXORD() will also retar
zero.

INKEYQ
Input key

INKEY([nSecond};) = ninkeyCode

specifies the number of seconds INKEY()
waits for a keypress. You can specify the
value in increments as small as one-tenth
of a second. Specifying zero halts the pro-
gram until a key is pressed. fSecondss
omitted, INKEY() does not wait for a key-
press.

nSeconds

1184

INKEY() returns an integer numeric value from -39 to 386,nde
tifying the key extracted from the keyboard buffer. If theyke
board buffer is empty, INKEY() returns zero. INKEY() retsrual-
ues for all ASCII characters, function, Alt+function, Gtilinction,
Alt+letter, and Ctrl+letter key combinations.

ninkeyCodevalue Key or key combination
5 Up arrow], [Ctrl]+[E]
24 Down arrow], [Ctrl]+[X]
19 Left arrow], [Ctrl]+[S]
4 Right arrow], [Ctrl]+[D]
1 Home], [Ctrl]+[A]
6 End], [CtrI]+[F]
18 PgUp], [Ctrl]+[R]
3 PgDn], [Ctrl]+[C]
397 Ctrl]+[Up arrow]
401 Ctrl]+[Down arrow]
26 Ctrl]+[Left arrow], [CtrlI]+[Z]
2 Ctrl]+[Right arrow], [Ctrl]+[B]
29 Ctrl]+[Home
23 Ctrl]+[End], [CtrI [+[W]
31 Ctrl]+[PgUp], [Ctrl]+[Hyphen]
30 Ctrl]+[PgDn], [CtrI]+["]
408 Alt]+[Up arrow]
416 Alt]+[Down arrow]
411 Alt]+[Left arrow]
413 Alt]+[Right arrow]
407 Alt]+[Home]
415 Alt]+[End]
409 Alt]+[PgUp]
417 [Alt]+[PgDn]
13 [Enter], [CtrI]+[M]
32 [Space bar]
27 Esc]
10 Ctrl]+[Enter]
379 Ctrl]+[Print Screen]
309 Ctrl]+[?]
284 Alt]+[Enter]
387 Alt]+[Equals]
257 Alt[+[Esc]
422 Keypad [Alt]+[Enter]
399 Keypad [Ctrl]+[5]
405 Keypad [Ctrl]+[/]
406 Keypad [Ctrl]+[*]
398 Keypad [Ctrl]+[-]
400 Keypad [Ctrl]+[+]
5 Keypad [Alt]+[5]
420 Keypad [Alt]+[/]
311 Keypad [Alt]+[*]
330 Keypad [Alt]+] -]
334 Keypad [Alt]+[+]
22 Ins], [Ctrl]+[V]
7 Del], [CtrI]+[G]
8 Backspace], [Ctrl]+[H]
9 Tab], [Ctrl]+[1]
271 Shift]+[Tab]
402 Ctrl]+[Ins]
403 Ctrl]+[Del]
127 Ctrl]+[Backspace]
404 Ctrl]+[Tab]
418 Alt]+[Ins]
419 Alt]+[Del]
270 Alt]+[Backspace]
421 Alt]+[Tab]
1 Ctrl]+[A], [Home
2 Ctrl]+[B], [Ctrl]+[Right arrow]
3 Ctrl]+[C], [PgDn], [Ctrl]+[ScrollLock]
4 Ctrl]+[D], [Right arrow]
5 Ctrl]+[E], [Up arrow]
6 Ctrl]+[F], [End]
7 Ctrl]+[G], [Del]
8 Ctrl]+[H], [Backspace]
9 [CtrI]+[1], [Tab]
1185

ninkeyCodevalue

Key or key combination

10 Ctrl]+[J]

11 Ctrl]+[K]

12 Ctrl]+[L]

13 Ctrl]+[M], [Return]
14 Ctrl]+[N

15 Ctrl]+[O

16 Ctrl]+[P]

17 Crl]+[Q]

18 Ctrl]+[R], [PgUp]
19 Ctrl]+[S], [Left arrow]
20 Ctrl]+[T]

21 Ctrl]+[U

22 Ctrl]+[V], [Ins]
23 Ctrl]+[W], [Ctrl]+[End]
24 Ctrl]+[X], [Down arrow
25 Ctrl]+[Y

26 Ctrl]+[Z], [Ctrl]+[Left arrow]
286 Alt]+[A

304 Alt]+[B

302 Alt]+[C

288 Alt]+[D

274 Alt]+[E

289 Alt]+[F

290 Alt]+[G

291 Alt]+[H

279 A+ 1]

292 Alt[+[J]

293 Alt]+[K]

294 Alt]+[L]

306 Alt]+[M]

305 Alt]+[N

280 Alt]+[O

281 Alt]+[P]

272 Alt]+[Q]

275 Alt]+[R]

287 Alt]+[9]

276 Alt]+[T]

278 Alt]+[U]

303 Alt]+[V]

273 Alt]+[W]

301 Alt]+[X

277 Alt]+[Y

300 Alt]+[Z

376 Alt]+[1

377 Alt]+[2

378 Alt]+[3

379 Alt]+[4

380 Alt]+[5

381 Alt]+[6

382 Alt]+[7

383 Alt]+[8

384 AIt]+[9

385 Alt]+[0

28 F1], [Ctrl]+[Backslash]
-1 F2

-2 F3

-3 F4

-4 F5

-5 F6

-6 F7

-7 F8

-8 F9

-9 F10

-40 F11

41 F12

-20 Ctrl]+[F1

-21 Ctrl]+[F2

-22 Ctrl]+[F4

-23 Ctrl]+[F3

-24 Ctrl]+[F5

-25 Ctrl]+[F6

1186

ninkeyCodevalue Key or key combination
-26 Ctrl]+[F7
27 Ctrl]+[F8
-28 Ctrl]+[F9
-29 Ctrl]+[F10
44 Ctrl]+[F11
45 Ctrl]+[F12
-30 Alt]+[F1
-31 Alt]+[F2
-32 Alt]+[F3
-33 Alt]+[F4
-34 Alt]+[F5
-35 Alt]+[F6
-36 Alt]|+[F7
-37 Alt]+[F8
-38 Alt]+[F9
-39 Alt]+[F10
-46 Alt]+[F11
-47 Alt]+[F12
-10 Shift]+[F1]
-11 [Sift[+[F2]
12 [Shift]+[F3]
-13 [Shift]+[F4]
-14 [Shift[+[F5]
-15 [Shift]+[F6]
-16 [Shift]+[F7]
-17 [Snift]+[F8]
-18 Shift]+[F9]
-19 Shift]+[F10
-42 Shift]+[F11
43 Sift]+[F12
INTO
«
Integer

I NT(nExp) = ninteger

is a numeric expression to convert to anlin-

‘ nEXp teger.

INT() is a numeric function that converts a numeric valuendra
teger by truncating all digits to the right of the decimalmioiNT()
is useful in operations where the decimal portion of a nunigaot
needed.

ISALPHAQ

«

| SALPHA(cString) = IBoolean

[cString | is the character string to examine. |

ISALPHA() returns true ‘(T. ") if the first character ircString is
alphabetic; otherwise, it returns falsefg. ’).

ISCOLORO

«

I'SCOLOR() | 1SCOLOUR() = IBoolean

ISCOLOR() returns true (T.) if there is a color graphics card in-
stalled; otherwise, it returns false E. *).

ISDIGITO

«

1 SDI G T(cString) = IBoolean

[cString | is the character string to examine. |

ISDIGIT() returns true‘(T. ") if the first character of the character
string is a digit between zero and nine; otherwise, it refufaise

1187

¢.F.).
ISLOWERQ)

| SLONER(cString) = |Boolean

[cString [is the character string to examine. \

ISLOWER() returns true (T. *) if the first character of the character
string is a lowercase letter; otherwise, it returns fais€.(’).

ISPRINTERQ

| SPRINTER() = IReady

ISPRINTER() returns true (T.) if ‘LPTL: " is ready; otherwise, it
returns false‘(F.).

ISUPPERO

| SUPPER(cString) = IBoolean

[cString | is the character string to examine. \

ISUPPER() returns true.(T. ") if the first character is an uppercase
letter; otherwise, it returns false €. ’).

L2BINO

Long to binary

L2BI N(nExp) = cBinaryinteger

is the numeric value to convert. Decimal
nExp

digits are truncated.

L2BIN() returns a four-byte character string formatted &&2a bit
binary integer.

LASTKEYO

LASTKEY() = ninkeyCode

LASTKEY() is a keyboard function that reports the INKEY ()lva
of the last key fetched from the keyboard buffer by the INKEY(
function, or a wait state. LASTKEY(() retains its currentwaluntil
another key is fetched from the keyboard buffer.

LASTRECO

Last record

LASTREC() = nRecords

LASTREC() returns the number of physical records in thevacti
alias as an integer numeric value.

LEFTO

LEFT(cString, nCount) = cSubString

is a character string from which to extract
characters.
is the number of characters to extract.

cString

nCount

LEFT() returns the leftmosiCount characters o€String as a char-
acter string. IfnCount is negative or zero, LEFT() returns a null
string (™). If nCountis larger than the length of the character string,
LEFT() returns the entire string.

1188

LENO

«

Length

LEN(cString | aTarge) = nCount

cString
aTarget

is the character string to count.
is the array to count.

LEN() returns the length of a character string or the numbeles
ments in an array as an integer numeric value.

LOGO

«

LOG(nExp) = nNaturalLog

nEx is a numeric value greater than zero to cpbn-
P vert to its natural logarithm.

LOG() returns the natural logarithm as a numeric valuenBkp is
less than or equal to zero, LOG() returns a numeric overflag+ (d
played as a row of asterisks).

LOWERQ

«

LOVER(cString) = cLowerString

‘ cString is a character string to convert to Iow?r—

case.

LOWER() returns a copy ofString with all alphabetic characters
converted to lowercase.

LTRIMO

«

Left trim

LTRI M cString) = cTrimString

‘ cString is the character string to copy without Ieer-

ing spaces.

LTRIM() returns a copy otString with the leading spaces removed.

LUPDATEQ

«

Last update

LUPDATE() = dModification

LUPDATE() returns the date of last change to the open datsfias
in the current work area.

MAXO

«

‘ MAX(nExpl, nExp2) = nLarger

MAX(dExpl, dExp2) = dLarger

nExpl, nExp2
dExp1, dExp2

are the numeric values to compare.
are the date values to compare.

MAX() returns the larger of the two arguments. The value retdr
is the same type as the arguments.

MAXCOLQ

«

Max column

MAXCOL() = nColumn

1189

MAXCOL() returns the column number of the rightmost visibtd-c [Ctrl]+[End] Move to end of current window
umn for display purposes. [Pgup] Move to previous edit window
PgDn] Move to next edit window
« MAXROWO Ctrl]+[PgUp Move to beginning of memo
Ctrl]+[Pgbn Move to end of memo
MAXRON) = nRow Return] Move to beginning of next line
Delete] Delete character at cursor
MAXROW() returns the row number of the bottommost visible row Backspace] Delete character to left of cursor
for display purposes. Tab] Insert tab character or spaces
Printable characters Insert character
MEMOEDITQ Ctrl]+Y Delete the current line
« Ctrl]+T Delete word right
Ctrl]+B Reform paragraph
MEMOED! T([cString] | Ctrl]+V/[Ins] Toggle insert mode
nTop| . [nleft] , Ctrl J+W Finish editing with save
nBotton] , [nRight] , Esc] Abort edit and return original
[EditMode] ,
cUserFunction| ,
nLineLength]r? MEMOLINEO «
nTabsiz} ,
nTextBuﬁerRovﬂ , ‘ MEMOLI NE(cString,
nTextBufferCqumn] , [nLineLength] ,
nWindowRoW , [nLineNumbeﬂ ,
nWindowCqumr]) = cTextBuffer [nTabSizi ,
cString is the character string or memo field |to Iwrap]) = ctine
copy to the MEMOEDIT() text buffer. cStrin is the memo field or character string frgm
nTop, nLeft, nBottom, are window coordinates. The default coor- 9 which to extract a line of text. _
nRight dinates are 0, 0, MAXROW(), and MAX- _ specifies the number of characters per line
COL(). nLineLength and can be between four and 254 . If not
determines whether the text buffer can|be specified, the default line length is 79.
|IEditMode edited or merely displayed. If not speci- . is the Tine number to extract. If not speci-
fied, the default value is true. (T. '). nLineNumber fied, the default value is one.
is the name of a user-defined function that nTabSize defines the tab size. If not specified, the
. executes when the user presses a key not default value is four. .
cUserFunction recognized by MEMOEDIT() and when rjo toggles word wrap on and off. Specifying
keys are pending in the keyboard buffer, IWrap true (. T.") toggles word wrap on; fals
determines the length of lines displayed (. F.”) toggles it off. If not specified, th
in the MEMOEDIT() window. If a line default value is true'(T.).
nLineLength is greater thamLineLength, it is word ' -))
wrapped to the next line in the MEM- MEMOLINE() returns the line of text specified mLineNumberin
OEDIT() window. The default line length cString as a character string. If the line has fewer characters trean t
is (nRight - nLeft).) indicated length, the return value is padded with blankshéfline
. determines the size of a tab character tg in- number is greater than the total number of lineg$tring, MEM-
nTabSize sert when the user presses Tab. The default . ;)
is four. OLINE() returns a null string (™). fiWrap is true (. T. ') and the
define the display position of the cursor indicated line length breaks the line in the middle of a wadhdt
within the text buffer when MEMOEDIT(word is not included as part of the return value but shows upeat
nTextBufferRow, is invoked. nTextBufferRow begins with beginning of the next line extracted with MEMOLINE(). Wrap is
nTextBufferColumn one andnTextBufferColumn begins with false (. F. '), MEMOLINE() returns only the number of characters
zero. Default is the beginning of MEM- specified by the line length. The next line extracted by MEMO-
derﬂEg(t)h‘g”nlggl";’i sosition of the Cursor LINE() begins with the character following the next hardrizge
within the MEMOEDIT() window. Ro return, and all intervening characters are not processed.
nWindowRow and column positions begin with zero. |If MEMOREADQ
nWindowColumn these arguments are not specified, the fini- p
tial window position is row zero and the
current cursor column position. MEMOREAD(cFile) = cString
MEMOEDIT() is a user interface and general purpose text eglitin is the name of the file o read from disk| It
function that edits memo fields and long character stringitirig cFile must include an extension if there is one,
occurs within a specified window region placed anywhere @n th and can optionally include a path.
S?Eﬁ;}o\,\,m CUl+E Move up one fine MEMOREAD() returns the contents of a text file as a character
Dnarrow]/[Ctrl]+X Move down one line string.
Leftarrow]/[Ctrl]+S Move left one character
Rightarrow]/[Ctrl]+D Move right one character MEMORYO
CurlT- «
[Leftarrow]/[CtrIJ+A Move left one word ‘ VEMORY() = nKbytes
[grlh]t_ cull+F | Move right one word i i i
ghtarrow]/[Ctrl] .] is a numeric value that determines the type
Home] Move to beginning of current line ‘ nExp of value MEMORY() returns.)r
End Move to end of current line
Ctrl]+[Home] Move to beginning of current window

1190 1191

«

MEMORY() returns an integer numeric value representing the
amount of memory available.

MEMORY(0) Estimated total space available for charac-
ter values
MEMORY (1) Largest contiguous block available for
character values
MEMORY(2) Area available for RUN commands
MEMOTRANQ

Memo translate

MEMOTRAN(cString,
cRepIaceHardCﬂl ,
cRepIaceSoﬁC}?) = cNewString

is the character string or memo field |to

search. .
is the character to replace a hard carriage

return/linefeed pair with. If not specified,
the default value is a semicolon (;).
is the character to replace a soft carriage
return/linefeed pair with. If not specified,
the default value is a space.

cString

cReplaceHardCR

cReplaceSoftCR

MEMOTRAN() returns a copy ofString with the specified carriage
return/linefeed pairs replaced.

MEMOWRITO

Memo write

MEMOWRI T(cFile, cString) = ISuccess

is the name of the target disk file includ-
cFile ing the file extension and optional path and
drive designator.]
cString is _the chqracter string or memo field |to
write to cFile.

MEMOWRIT() is a memo function that writes a character string or
memo field to a disk file. If a path is not specified, MEMOWRIT()
writes cFile to the current DOS directory and not the current DE-
FAULT directory. If cFile already exists, it is overwritten. MEM-
OWRITY() returns true‘(T.) if the writing operation is successful;
otherwise, it returns false.(F. *).

MEMVARBLOCKQ

MEMVARBL OCK(cMemvarNamg = bMemvarBlock

is the name of the variable referred to by
the set-get block, specified as a character
string.

cMemvarName

MEMVARBLOCK() returns a code block that when evaluated sets
(assigns) or gets (retrieves) the value of the given memariable.
If cMemvarNamedoes not exist, MEMVARBLOCK() returns NIL.

MINO

M N(nExpl, nExp2) = nSmaller

M N(dExpl, dExp2) = dSmaller

nExpl, nExp2
dExp1, dExp2

are the numeric values to compare.
are the date values to compare.

MIN() returns the smaller of the two arguments. The valuerretd
is the same data type as the arguments.

1192

MLCOUNTO

«
Memo line count

‘ M_COUNT(cString, [nLineLength] ,
[nTabSiz§ , [IWrap]) = nLines

is the character string or memo field |to

count. A
specifies the number of characters per line

and can range from four to 254 . If npt
specified, the default line length is 79.
defines the tab size. If not specified, the

default value is four.
toggles word wrap on and off. Specifying

true (. T.’) toggles word wrap on; fals|
(. F.”) toggles it off. If not specified, th
default value is true' (T.).

cString

nLineLength

nTabSize

IWrap

MLCOUNT() returns the number of lines icString depending on
the nLineLength, the nTabSize and whether word wrapping is on
or off.

MLCTOPOSO

«
Memo line column to position

M_CTOPGCS(cText, nWidth, nLine,
nCol, [nTabSiz§ , [IWrap]) = nPosition

cText is the text string to scan.

nWidth is the line length formatting width.
nLine is the line number counting from 1.
nCol is the column number counting from 0.

) is the number of columns between tab
nTabSize stops. If not specified, the default is 4.
\Wrap is the word wrap flag. If not specified, the

defaultis true(T.").

MLCTOPOS() returns the byte position with@Text counting from
1.

MLPOS(

«

Memo line position

‘ M_PGS(cString, nLineLength,
nLine, [nTabSiz§ s [IWrap]) = nPosition

cString is a character string or memo field. \

nLineLength specifies the number of characters per line.

nLine specifies the line number.

nTabSize defines the tab size. The default is four.
toggles word wrap on and off. Specify-

IWrap ing true (. T.’) toggles word wrap on, and
false (. F.’) toggles it off. The default is
true (. T.").

MLPOS() returns the character positionmfine in cString as an
integer numeric value. IfiLine is greater than the number of lines
in cString, MLPOS() returns the length @String.

MONTHO

«

MONTH(dDate) = nMonth

| dDate | is the date value to convert. |

MONTH() returns an integer numeric value in the range of zero t
12. Specifying a null date (CTOD(")) returns zero.

1193

MPOSTOLC()

«

Memo position to line column

MPOSTOLC(cText, nWidth, nPos
[nTabSiz§ , [IWrap]) = aLineColumn

cText is a text string.
nWidth is the length of the formatted line.

is the byte position within text counting
nPos

from one.

TabSi is the number of columns between tab
nlapsize stops. If not specified, the default is four]
Wra is the word wrap flag. If not specified, the

p defaultis true'(T.).

MPOSTOLC() returns an array containing the line and the calum
values for the specified byte positionPos MPOSTOLC() is a
memo function that determines the formatted line and coloanre-
sponding to a particular byte position withiffext. Note that the line
number returned is one-relative, the column number is reladive.
This is compatible with MEMOEDIT().nPosis one-relative, com-
patible with AT(), RAT(), and other string functions.

NETERRQ

Net error

NEl'ERR([INewError]) = IError

if specified sets the value returned
by NETERR() to the specified status.
INewETrror can be either true'(T.’) or
false (. F.’). Setting NETERR() to a
specified value allows the runtime error
handler to control the way certain file
errors are handled.

INewError

NETERR() returns true (T. ") if a USE or APPEND BLANK fails.
The initial value of NETERR() is false.(F. ’). If the current process
is not running under a network operating system, NETERR@Gzs
returns false'(F.).

NETNAMEQ

NETNAME() = cWorkstationName

NETNAME() returns the workstation identification as a chésac
string up to 15 characters in length. If the workstation tdfeation
was never set or the application is not operating under tivé P&
Network, it returns a null string ("").

NEXTKEYQ

NEXTKEY() = ninkeyCode

NEXTKEY() returns an integer numeric value ranging from 89
386. If the keyboard buffer is empty, NEXTKEY() returns zero
If SET TYPEAHEAD is zero, NEXTKEY() always returns zero.
NEXTKEY() is like the INKEY() function, but differs in one fio-
damental respect. INKEY() removes the pending key from the k

board buffer and updates LASTKEY() with the value of the key.

NEXTKEY(), by contrast, reads, but does not remove the kesnfr
the keyboard buffer and does not update LASTKEY().

NOSNOW()

NOSNOW(IToggle) = NI L

1194

IToggle

is a logical value that toggles the curré

state of snow suppression. A value of tiue
(*. T.’) enables the snow suppression pn,

while a value of false‘(F.) disables snow
suppression.

NOSNOW() is used to suppress snow on old CGA monitors.

ORDBAGEXT()

ORDBAGEXT() = cBagExt

«

ORDBAGEXT() returns a character expression that is theude@r-
der Bag extension of the current work area. cBagExt is detein
by the RDD active in the current work area.

ORDBAGNAMEQ

ORDBAGNAME(nOrder| cOrderNam¢g = cOrderBagName

nOrder

is an integer that identifies the position]i
the Order List of the target Order whose

Order Bag name is sought.

cOrderName

«

is a character string that represents [the

name of the target Order whose Order B
name is sought.

ORDBAGNAME() returns a character string, the Order Bag name

of the specific Order.

ORDCREATEQ

‘ ORDCREATE(cOrderBagName[cOrderNam§ , CExpKey, [bEpre)] ,

[IUnique]) = NL

cOrderBagName

is the name of a disk file containing one
more Orders.

cOrderName

is the name of the Order to be created.

cExpKey

is an expression that returns the key va|

ag

«

or

lue

to place in the Order for each record in the

current work area. The maximum length
the index key expression is determined
the database driver.

bExpKey

is a code block that evaluates to a key va
that is placed in the Order for each rec
in the current work area.

IUnique

specifies whether a unique Order is

of
by

lue
rd

to

be created. Default is the current global

_SET_UNIQUE setting.

ORDCREATE() is an Order management function that creates ar

Order in the current work area. It works like DBCREATEINDBX(
except that it lets you create Orders in RDDs that recogniziépie

Order Bags.
ORDDESTROY(

ORDDESTROY(cOrderName[, cOrderBagName]) = NIL

is the name of the Order to be remo
cOrderName from the current or specified work area.
cOrderBagName is the name of a disk file containing one
more Orders.

ORDDESTROY() is an Order management function that removes &

«

specified Order from multiple-Order Bags. ORDDESTROY()a$ n
supported for DBFNDX and DBFNTX.

1195

«

ORDFOR(O

ORDNAMEQO

«

ORDFOR(cOrderName | nOrder [cOrderBagNam]z) = CcForExp
OrderN is the name of the target Order, whdse
corderName cForExp is sought.
is an integer that identifies the position|in
nOrder the Order List of the target Order whose
cForExp is sought. .
cOrderBagName is the name of an Order Bag containing ane
or more Orders.

ORDFOR() returns a character expression, cForExp, tha¢septs
the FOR condition of the specified Order. If the Order was net ¢
ated using the FOR clause the return value will be an empiygstr
("). If the database driver does not support the FOR cooaljtit
may either return an empty string ("") or raise an "unsupgmbftinc-
tion" error, depending on the driver.

ORDKEY()

ORDKEY(cOrderNameI nOrder[, cOrderBagNam}) = cExpKey

is the name of an Order, a logical ordering

cOrderName
of a database. _ 1
is an integer that identifies the position|in

nOrder the Order List of the target Order whose
cExpKey is sought.

cOrderBagName is the name of a disk file containing one|or
more Orders.

ORDKEY() is an Order management function that returns aadhar
ter expression, cExpKey, that represents the key expresdithe
specified Order.

ORDLISTADDQO

ORDLI STADD(cOrderBagName[, cOrderNam§) = NL

is the name of a disk file containing onejor

cOrderBagName
more Orders. .
the name of the specific Order from the OQr-
der Bag to be added to the Order List of the
cOrderName current work area. If you do not specify

cOrderName all orders in the Order Bag
are added to the Order List of the current
work area.

ORDLISTADD() is an Order management function that adds the
contents of an Order Bag , or a single Order in an Order Bag, to
the Order List. Any Orders already associated with the wodaa
continue to be active. If the newly opened Order Bag contdias
only Order associated with the work area, it becomes theaiing
Order; otherwise, the controlling Order remains unchanged

ORDLISTCLEARQ

ORDLI STCLEAR() = NIL

ORDLISTCLEAR() is an Order management function that rensove
all Orders from the Order List for the current work area.

ORDLISTREBUILDO

ORDLI STREBUI LD() = NIL

ORDLISTREBUILD() is an Order management function that re-
builds all the orders in the current Order List.

1196

CORDNANE(nOrder[, cOrderBagNam]z) = cOrderName

is an integer that identifies the position]in
nOrder the Order List of the target Order whose
database name is sought.
cOrderBagName is the name of a disk file containing onejor
more Orders.

ORDNAME() returns the name of the specified Order in the cdrren
Order List or the specified Order Bag if opened in the Currede®
list.

ORDNUMBERQ

«

ORDNUNMBER(cOrderName[, cOrderBagNam]&) = nOrderNo

the name of the specific Order whose pasi-
cOrderName tion in the Order List is sought.
cOrderBagName is the name of a disk file containing one|or
more Orders.

ORDNUMBER() returns nOrderNo, an integer that represergs th
position of the specified Order in the Order List.

ORDSETFOCUSQ

«

(RDSETFCI:US([cOrderName | nOrder] [, cOrderBagNam]e)
= cPrevOrderNamelnFocus

is the name of the selected Order, a logical
cOrderName ordering of a database.
nOrder is a number representing the position in the
Order List of the selected Order.
cOrderBagName is the name of a disk file containing one|or
more Orders.

ORDSETFOCUS() is an Order management function that returns
the Order Name of the previous controlling Order and optigna
sets the focus to an new Order.

(OX10)

«

‘ 0S() = cOsName

OS() returns the operating system name as a character.string

OUTERRQ

«
Output error

‘ QUTERR(exp_lis) = NL

exp_list of any combination of data types including

memao.

is alist of values to display and can con?st

OUTERR() is identical to OUTSTD() except that it writes teeth
standard error device rather than the standard outputele@iatput
sent to the standard error device bypasses the console &mat ou
devices as well as any DOS redirection. It is typically usetby
error messages in a manner that will not interfere with thadsrd
screen or printer output.

OUTSTDO

«

Output standard

QUTSTD(exp_lis) = NIL

1197

exp_list of any combination of data types including

is alist of values to display and can con}ist
memo.

OUTSTD() is a simple output function similar to QOUT(), epte
that it writes to the STDOUT device (instead of to the conseigput
stream).

PAD?()

PADL(exp, nLength, [cFiIIChar]) = cPaddedString

PADC(exp, nLength, [cFiIIChar]) = cPaddedString

PADR(exp, nLength, [cFiIIChar]) = cPaddedString

exp is a character, numeric, or date value to pad

with a fill character. .
nLength Lirt:e length of the character string to re-
Fillch is the character fo padxp with. If not

criithar specified, the default is a space character.

PADC(), PADL(), and PADR() are character functions that plaalr-
acter, date, and numeric values with a fill character to eraatew
character string of a specified length. PADC() cenexp within
nLength adding fill characters to the left and right sides; PADL()
adds fill characters on the left side; and PADR() adds fill absars
on the right side.

PCOLO

Printed column

PCOL() = nColumn

PCOL() returns an integer numeric value representing tisé la
printed column position, plus one. The beginning columnitims
is zero.

PROWQ)

Printed row

PROW) = nRow

PROW() returns an integer numeric value that representsutmbder
of the current line sent to the printer. The beginning rowitmsis
zero.

QOUTO

Qour([exp_lisﬂ) = NIL

quur([exp_ns]) = NIL

is a comma-separated list of expressibns
(of any data type other than array or block)

to display to the console. If no argument is
specified and QOUT() is specified, a car-
riage return/linefeed pair is displayed. |If
QQOUT() is specified without arguments,
nothing displays.

exp_list

QOUT() and QQOUTY() are console functions. They display tie r
sults of one or more expressions to the console. QOUT() ¢sitpu
carriage return and linefeed characters before displayiegesults
of exp_list QQOUT() displays the results efkp_listat the current
ROW() and COL() position. When QOUT() and QQOUT() display

1198

to the console, ROW() and COL() are updated.
RATO

«

Right at

‘ RAT(cSearch cTarge) = nPosition

is the character string to locate.
is the character string to search.

cSearch
cTarget

RAT() returns the position ofSearchwithin cTargetas an integer
numeric value, starting the search from the rightc$earchis not
found, RAT() returns zero.

RDDLISTO

«

RDDLI ST([nRDDType]) = aRDDList

is an integer that represents the type of the
RDD you wish to list.

nRDDType= 1 Full RDD implementation
nRDDType= 2 Import/Export only driver

nRDDType

RDDLIST() returns a one-dimensional array of the RDD nanegs r
istered with the application alRDDType

RDDNAMEQ

«

‘ RDDNAME() = cRDDName

RDDNAME() returns a character string, cRDDName, the regeste
name of the active RDD in the current or specified work area.

RDDSETDEFAULTO

«

RDDSETDEFAULT([cNewDefauItRDE]) = cPreviousDefaultRDD

is a character string, the name of the RDD
that is to be made the new default RDD|in
the application.

cNewDefaultRDD

RDDSETDEFAULT() is an RDD function that sets or returns
the name of the previous default RDD driver and, optionally,
sets the current driver to the new RDD driver specified by
cNewDefaultRDD

READINSERTO

«

READI NSERT([IToggIe]) = ICurrentMode

toggles the insert mode on or off. Trlie
(*. T.’) turns insert on, while false.(F. ’)
turns insert off. The defaultis false €.)
or the last user-selected mode in READ) or
MEMOEDIT().

[Toggle

READINSERT() returns the current insert mode state as a#bgi
value.

READMODALQO

«

‘ READMODAL (aGetlis) = NI L

is an array containing a list of Get objeTts

‘ aGetList to edit.

READMODAL() is like the READ command, but takes a GetList ar-
ray as an argument and does not reinitialize the GetLisy avteen
it terminates. The GET system is implemented using a pulblic a

1199

ray called GetList. Each time an .@ET command executes, it
creates a Get object and adds to the currently visible Gedlriay.
The standard READ command is preprocessed into a call to READ
MODAL() using the GetList array as its argument.

READVARO

READVAR() = cVarName

READVAR() returns the name of the variable associated with t
current Get object or the variable being assigned by theenurr
MENU TO command as an uppercase character string.

RECNOO

Record number

RIGHT(O
«
RI GHT(cString, nCount) = cSubString
cString is the character string from which to extract
characters.
nCount is the number of characters to extract.

RIGHT() returns the rightmosbhCount characters otString. If
nCount is zero, RIGHT() returns a null string ("). IhCount is
negative or larger than the length of the character strinGHR ()
returnscString.

RLOCKQO

«
Record lock

RECNQ() = nRecord

RLOCK() = ISuccess

RECNO() returns the current record number as an integer name
value. If the work area contains a database file with zerordsco
RECNO() returns one, BOF() and EOF() both return trug.(’),
and LASTREC() returns zero. If the record pointer is movest pa
the last record, RECNO() returns LASTREC() + 1 and EOF()rretu
true (. T.’). If an attempt is made to move before the first record,
RECNO() returns the record number of the first logical regorithe
database file and BOF() returns trueT. '). If no database file is
open, RECNO() will return a zero.

RECSIZEQ

Record size

RECS| ZE() = nBytes

RECSIZE() returns, as a numeric value, the record lengthyias,
of the database file open in the current work area. RECSIZE() r
turns zero if no database file is open.

REPLICATEQ

REPLI CATE(cString, nCount) = cRepeatedString

cString
nCount

is the character string to repeat.
is the number of times to repeeBtring.

REPLICATE() returns a character string. Specifying a zesdhe
nCount argument returns a null string ().

RESTSCREENQO

Restore screen

RESTSCREEN([nTop| , [nLeft] ,
[nBottorr] , nRight] , cScree) = NIL

define the coordinates of the screen |in-
formation contained incScreen If
the cScreenwas saved without coordj-
nates to preserve the entire screen,| no
screen coordinates are necessary with
RESTSCREEN().
is a character string containing the saved

screen region.

nTop, nLeft,
nRight

nBottom,

cScreen

RESTSCREEN() is a screen function that redisplays a scezganr
saved with SAVESCREEN(). The target screen location mayee t
same as or different than the original location when theestregion
was saved.

1200

RLOCK() is a network function that locks the current recqudg-
venting other users from updating the record until the lecke-
leased. RLOCK() provides a shared lock, allowing othersisead-
only access to the locked record while allowing only the entuser
to modify it. A record lock remains until another record isked,
an UNLOCK is executed, the current database file is closednor
FLOCK() is obtained on the current database file.

ROUNDOQ
«
ROUND(nNumber, nDecimal§ = nRounded
nNumber is the numeric value to round.
defines the number of decimal places| to
nDecimals retain. Specifying a negativeDecimals
value rounds whole number digits.

ROUND() is a numeric function that rounddlumberto the number
of places specified bpDecimals Specifying a zero or negative
value fornDecimalsallows rounding of whole numbers. A negative
nDecimalsindicates the number of digits to the left of the decimal
point to round. Digits between five to nine, inclusive, aranded
up. Digits below five are rounded down.

ROWQ

«

RON() = nRow

ROW() returns the cursor row position as an integer numeiices
The range of the return value is zero to MAXROW().

RTRIMO

«

Right trim

‘ [R’] TRI M cString) = cTrimString

‘ cString is the character string to copy without trﬂll-

ing spaces.

RTRIM() returns a copy ofString with the trailing spaces removed.
If cString is a null string (") or all spaces, RTRIM() returns a null
string ("").

SAVESCREENQ

«

‘ SAVESCREEN([nTop] , [nLeft ,
[nBottorr] , nRight]) = cScreen

nLeft, nBottom,

‘ nTop,
to save. Default is the entire screen.

nRight

define the coordinates of the screen re%ion

1201

SAVESCREEN() returns the specified screen region as a diearac
string.

SCROLLO

SCRO_L([nTop] , [nLeft] ,
[nBonom , nRight] , [nVert] [nHoriz]) = NIL

nTop, nLeft, nBottom, nRight define the scroll region coordinates.
defines the number of rows to scroll, verti-
cally. A positive value scrolls up the spec-
ified number of rows. A negative valy
scrolls down the specified number of ro

A value of zero disables vertical scrolling.
If nVert is not specified, zero is assumed.
defines the number of rows to scroll hor-
izontally. A positive value scrolls left the
specified number of columns. A negative
value scrolls right the specified number|of
columns. A value of zero disables hori-
zontal scrolling. IfnHoriz is not speciq
fied, zero is assumed. If you supply neither
nVert or nHoriz parameters to SCROLL(),
the area specified by the first four parame-
ters will be blanked.

o

nVert

o

nHoriz

SCROLLY() is a screen function that scrolls a screen regiommup
down a specified number of rows. When a screen scrolls up, the
first line of the region is erased, all other lines are movedamal a
blank line is displayed in the current standard color on tbgdm

line of the specified region. If the region scrolls down, tipemtion

is reversed. If the screen region is scrolled more than oree this
process is repeated.

SECONDSO

SECONDS() = nSeconds

SECONDS() returns the system time as a numeric value in tine fo
seconds.hundredths. The numeric value returned is the euaib
seconds elapsed since midnight, and is based on a twentjdon
clock in a range from zero to 86399.

SELECTO

SELECT([cAIias]) = nWorkArea

| cAlias | is the target work area alias name. \

SELECT() returns the work area of the specified alias as @énte
numeric value.

SETO

SET(nSpecifier [expNewSettin]; , [IOpenMode})
= CurrentSetting

is a numeric value that identifies the setting
to be inspected or changed.
is an optional argument that specifies a
expNewSetting new value for thenSpecifier The type of
expNewSettinglepends omSpecifier

is a logical value that indicates whether|or
not files are opened for some settings.| A
value of false‘(F.) means the file shoul

be truncated. A value of true (T. ’) mean

the file should be opened in append mode.
In either case, if the file does not exist, it

is created. If this argument is not specified,
the default is append mode.

nSpecifier

|OpenMode

1202

SET() returns the current value of the specified setting.

Inside nB, the function SET() is not so easy to use as insiel€tip-
per environment. This because nB cannot support manifastaots
and a numeric specifierSpecifieris not easy to manage. Instead of
SET() you can use SETVERB().

SETBLINKO

«

SETBLI NK([IToggIs]) = ICurrentSetting

changes the meaning of the asterisk |(*)
character when it is encountered in a SET-
COLOR() string. Specifying true' (T.)
sets character blinking on and falseK.)
sets background intensity. The default
true (. T.).

IToggle

is

SETBLINK() returns the current setting as a logical value.

SETCANCELO

«

SEl'O’-\NCEL([IToggIe]) = ICurrentSetting

changes the availability of Alt-C and Ctrl
Break as termination keys. Specifying true
IToggle (*. T.") allows either of these keys to te
minate an application and false E. ') dis-
ables both keys. The defaultis trueT. ').

=
T

SETCANCEL() returns the current setting as a logical value.

SETCOLORO

«

SEI'CO_CR([cCoIorSlring]) = cColorString

is a character string containing a Iist
cColorString of color attribute settings for subsequent
screen painting.

SETCURSORQ

«

SEl'Cl,RSO?([nCursorShap}) = nCurrentSetting

is a number indicating the shape of the cur-
sor.

nCursorShape== 0 None
nCursorShape nCursorShape== 1 Underline
nCursorShape== 2 Lower half block
nCursorShape== 3 Full block
nCursorShape== 4 Upper half block

SETCURSOR() returns the current cursor shape as a numéuie va

SETKEYO

«

SETKEY(ninkeyCode [bAction]) = bCurrentAction

is the INKEY/() value of the key to be assp-
ciated or queried.
specifies a code block that is automati-
bAction cally executed whenever the specified key
is pressed during a wait state.

ninkeyCode

SETKEY() returns the action block currently associatedhvifie
specified key, or NIL if the specified key is not currently asated
with a block.

1203

«

SETMODEQ

SETMODE(nRows nCols) = ISuccess

is the number of rows in the desired display

nRows
mode.)
is the number of columns in the desired dis-
nCols
play mode.

SETMODE() is an environment function that attempts to change

the mode of the display hardware to match the number of rows an
columns specified. The change in screen size is reflecte ivath
ues returned by MAXROW() and MAXCOL().

SETPOSO
Set position
SETPOS(nRow, nCol) = N L
define the new screen position of the cur-
nRow, nCol sor. These values may range from 0, Q to

MAXROW(), MAXCOL().

SETPOS() is an environment function that moves the cursa to
new position on the screen. After the cursor is position€dy\Wg)
and COL() are updated accordingly.

SETPRCQ

Set printer row column

SETPRC(nRow, nCol) = N L
nRow is the new PROW() value.
nCol is the new PCOL() value.

SETPRC() is a printer function that sends control codesd@ttter
without changing the tracking of the printhead position.

SOUNDEXQ

SOUNDEX(cString) = cSoundexString

| cString [is the character string to convert. |

SOUNDEX() returns a four-digit character string in the foA®99.
SPACEQ

SPACE(nCount) = cSpaces

| nCount [is the number of spaces to return. |

SPACE() returns a character string. ri€ount is zero, SPACE()
returns a null string (").

SQRTO

SQRT(nNumber) = nRoot

ANumber is a positive number to take the square rFot

of.

SQRT() returns a numeric value calculated to double pr@tisihe
number of decimal places displayed is determined solely By S
DECIMALS regardless of SET FIXED. A negativeNumber re-
turns zero.

1204

STRO

«

String

STR(nNumber, [nLength] , [nDecimaI%) = cNumber

is the numeric expression to convert t0 a

nNumber character string.
is the Tength of the character string [to
nLength return, including decimal digits, decimal
point, and sign.
nDecimals is the number of decimal places to return.

STR() returnmNumber formatted as a character string.

STRTRANQ

«

‘ STRTRAN(cString, cSearch
[cRepIac} , [nStart] , [nCoum]) = cNewString

is the character string or memo field |to

search.
is the sequence of characters to locate.

is the sequence of characters with whjch
to replacecSearch If this argument is
not specified, the specified instances of the
search argument are replaced with a null
string ().
is the first occurrence that will be replaced.
If this argument is omitted, the default|is

cString

cSearch

cReplace

nStart

one.
is the number of occurrences to replace]. If
this argument is not specified, the defgult
is all.

nCount

STRTRAN() returns a new character string with the specified i
stances ot Searchreplaced withcReplace

STUFFO

«

‘ STUFF(cString, nStart,
nDelete clnsert) = cNewsString

) is the target character string into which

cString)

characters are inserted and deleted.

is the starting position in the target string
nStart . - -

where the insertion/deletion occurs.
nDelete is the number of characters to delete.
clnsert is the string to insert.

STUFF() returns a copy ofString with the specified characters
deleted and witltinsert inserted.

SUBSTRQO

«

Sub string

SUBSTR(cString, nStart, [nCoum]) = cSubstring

is the character string from which to extract
a substring.

is the starting position ieString. If nStart
is positive, itis relative to the leftmost char-
acter incString. If nStart is negative, it
is relative to the rightmost character in the
cString.
is the number of characters to extract.| If
omitted, the substring begins mBtart and
continues to the end of the string. |If
nCountis greater than the number of char-
acters fromnStart to the end ofcString,
the extra is ignored.

cString

nStart

nCount

SUBSTR() is a character function that extracts a substriog fan-
1205

other character string or memo field.

TIMEQ

«

TIME() = cTimeString

TIME() returns the system time as a character string in thenfor
hh:mm:ss. hh is hours in 24-hour format, mm is minutes, arid ss
seconds.

TIME() is a time function that displays the system time on ttresn
or prints it on a report.

TONEQ

«

TONE(nFrequency, nDuration) = NI L

is a positive numeric value indicating the
frequency of the tone to sound.
is a positive numeric value indicating the
duration of the tone measured in incre-
nDuration ments of 1/18 of a second. For example,
an nDuration value of 18 represents one
second.

nFrequency

For both arguments, noninteger values are truncated (ooidiex)
to their integer portion.

TRANSFORMOQ

«

TRANSFORM exp, cSayPictur§ = cFormatString

is the value to format. This expression dan
exp be any valid data type except array, code
block, and NIL.
is a string of picture and template char-
cSayPicture acters that describes the format of the|re-
turned haracter string.

TRANSFORM() convertexpto a formatted character string as de-
fined bycSayPicture

TYPEO

«

TYPE(cExp) = cType

is a character expression whose type i$ to
be determinedcExp can be a field, with o
without the alias, a private or public vari-
able, or an expression of any type.

cExp

TYPE() returns one of the following characters:
Array

Block

Character

Date

Logical

Memo

Numeric

Object

NIL, local, or static
E Error syntactical

| Error indeterminate

cic|c|o|Zz|IZ|r|OO|m >

TYPE() is a system function that returns the type of the Symeti
expression. TYPE() is like VALTYPE() but uses the macro aper
(&) to determine the type of the argument. VALTYPE(), by a@ist,
evaluates an expression and determines the data type oéttha r
value.

1206

UPDATEDQ

«

UPDATED() = IChange

UPDATED() returns true‘(T.') if data in a GET is added or
changed; otherwise, it returns falseR. *).

UPPERQ

«

UPPER(cString) = cUpperString

| cString | is the character string to convert. |

UPPER() returns a copy afString with all alphabetical characters
converted to uppercase. All other characters remain the sanin
the original string.

USEDQO

«
USED() = IDbfOpen

USED() returns true‘(T. ") if there is a database file in USE in the
current work area; otherwise, it returns false(’).

VALO

«
Value

VAL(cNumber) = nNumber

[cNumber | is the character expression to convert. |

VAL() is a character conversion function that converts arabger
string containing numeric digits to a numeric value. WherL{A
is executed, it evaluatesNumberuntil a second decimal point, the
first non-numeric character, or the end of the expressiondsun-
tered.

VALTYPEQ

«

Value type

VALTYPE(exp) = cType

\ exp \ is an expression of any type. \

VALTYPE() returns a single character representing the tigta re-
turned byexp. VALTYPE() returns one of the following characters:
Array
Block
Character
Date
Logical
Memo
Numeric
Object
NIL

clo|IZIZ|r (OO0 W >

VALTYPE() is a system function that takes a single argumeve)-
uates it, and returns a one character string describingdteetype
of the return value.

YEARQ

«

YEAR(dDate) = nYear

[dDate | is the date value to convert. |

YEAR() returns the year of the specified date value including
century digits as a four-digit numeric value. The value metd is

1207

not affected by the current DATE or CENTURY format. Specifyi
a null date (CTOD(")) returns zero.

nB functions

Some functions made into nB are available for macro use. Not a
available functions are here documented.

ACCEPTO

ACCEPT(Field, [cMessag]a, [cHeade]) = updatedField NI L

It is a prompt function that showsMessageasking to type some-
thing into Field. It returns the updated data or NIL iEpc] was
pressed. The stringHeaderis showed centered at the top window.

ACHOICEQ

ACHO CE(nTop, nLeft,
acMenultems
[aISeIectabIeItem}s,
[nInitiaIItem] ,
[IButtons | aButton%) = nPosition

nBottom, nRight,

nTop,
nRight

acMenultems

nLeft, nBottom,

are the window coordinates.

is an array of character strings to display as

the menu items. .
is a parallel array of logical values (one &

ement for each item iacMenultemg that
specify the selectable menu items. Ele-
ments can be logical values or character
strings. If the element is a character string,
itis evaluated as a macro expression which
should evaluate to a logical data type. | A
value of false(F. ') means that the corre-
sponding menu item is not available, and a
value of true {. T.’) means that it is avail-
able. By default, all menu items are avail-

able for selection.
is the position in theacMenultemsarray

alSelectableltems

ninitialltem of the item that will be highlighted when
the menu is initially displayed.
if True means that default buttons will ap-
IButtons
pear.
aButtons is an array of buttons.
aButtondn][1] == N the nth button row position;
aButtongd n][2] == the nth button column position;
aButtongd n][3] == the nth button text;
aButtongdn][4] == B the nth button code block.

ACHOICE() returns the numeric position in taeMenultemsarray
of the menu item selected. If no choice is made, ACHOICE (rret
zero.

ACHOICEWINDOW(O

ACHO CEW NDOW acMenultems [cDescriptior] ,
nLeft, nRight,
alSelectableltemp,

nInitiaIItem]) = nPosition

nTop, nBottom,

is a parallel array of logical values (one el-
ement for each item iacMenultemg that
specify the selectable menu items. Ele-
ments can be logical values or charagter
strings. If the element is a character string,
itis evaluated as a macro expression which
should evaluate to a logical data type. | A
value of false(F.’) means that the corre
sponding menu item is not available, and a
value of true {. T.’) means that it is avail-
able. By default, all menu items are avail-

able for selection.
is the position in theacMenultemsarray

of the item that will be highlighted when
the menu is initially displayed.

alSelectableltems

ninitialltem

ACHOICEWINDOW() calls ACHOICE() with a window border
around the ACHOICE() screen area.

ALERTBOXO

«

ALERTBOX(cMessage [aOption%) = nChoice

is the message text displayed, centered, in
the alert box. If the message contains one
cMessage or more semicolons, the text after the semi-
colons is centered on succeeding lines in
the dialog box.
aOptions deﬂnes_a list of up to 4 possible responses
to the dialog box.

ALERTBOX() returns a numeric value indicating which optieas
chosen. If the Esc] key is pressed, the value returned is zero. The
ALERTBOX() function creates a simple modal dialog. The user
can respond by moving a highlight bar and pressing the Return
SpaceBar keys, or by pressing the key corresponding to gtégfiter

of the option. IfaOptionsis not supplied, a single "Ok" option is
presented.

ALERTBOX() is similar to ALERT() but it accept mouse input.
ATBO

«

‘ ATB([nTop] , [nLeft] , [nBotton] , [nRight] ,
aArray, [nSubscrip] ,

acCoISayPi} ,

acCoITopSe]), [acCoIBodySe]), [acCoIBotSe} ,

acCoIHea(] , [acCoIFooﬂ ,

acMenultems

is an array of character strings to displa}? as

the menu items.

cDescription

is a header to be shown at the top of wjn-
dow.

nTop, nLeft,
nRight

nBottom,

are the window coordinates.

1208

abCoIVaIid] ,
abColMs
cCoIoﬂ , [abCoICoIori ,
IModify] ,
IButtons | aBunon%) = NL
nTop, nLeft, nBottom, [defines the screen area where browse have
nRight to take place.
aArray bidimensional array to be browsed.
nSubscript starting array position.
acColSayPic is the picture array.
is the top separation array: default|is
aCCOlTOpSep Chr(hlg4b)+ghr(196) —
is the body separation array: default|is
acColBodySep chr(179).
is the bottom separation array: default is
acColBotSep chr(193)+chr(196).
acColHead is the header array for every column.
acColFoot is the footer array for every column.
is the validation array that specify when] a
abColValid field is properly filled. The condition must
be specified in code block format.

1209

is the message array that permits to show
abColMsg information at the bottom of browse area.
The array must be composed with cade
blocks which result with a character string.
cColor is the color string: it may be longer than
the usual 5 elements.
is the color code block array. The cofe
block receive as parameter the value con-
abColColors tained inside the field and must return jan
array containing two numbers: they corre-
spond to the two color couple frooColor.
IModify indicates whether the browse can modify
data.
|Buttons if True, default buttons are displayed.
aButtons array of buttons.
aButtongd n][1] N the nth button row position;
aButtong n][2] N the nth button column position;
aButtong n][3] C the nth button text;
aButtong n][4] B the nth button code block.

This function starts the browse of a bidimensional arraylyGmn-
rays containing monodimensional array containing the saneof
editable data are allowed. The function can handle a maximium

61 columns.

BCOMPILEQ

BCOWPI LE(cString) = bBlock

Compiles the stringString and returns the code blodi8lock

BUTTONQO

BUTTON(@Buttons,

nROV\] , [nCoI] , [cTexﬂ s [cCoIoﬂ ,

bAction]) = NL

na

or

the array of buttons to be increased wit
aButtons new button array.

is the row and column starting position
nRow andnCol the button string. 9P
cText is the text that make up the button.
cColor is the color string.
bAction is the code block associated to the buttan.

This function adds t@Buttonsa new button array. Please note that
the button array added is compatible only with the READ()ction
and not the other function using array of buttons: the otdersot

have a color string.

COLORARRAY()

COLORARRAY(cColor) = aColors

cColors

a color string to be translated into a co
array.

or

This function transform a color string into a color array.eTarray
has as many elements as the colors contained in€ldéor string.

COORDINATEQ

COORDI NATE(

[@1Top, @Left] ,
[cHorizonta[l , [cVertical

@Bottom, @Right,
) = NIL

nTop, nLeft,
andnRight

nBottom ‘

are the starting position of a window thaﬂ is

to be differently aligned.

1210

determinates the horizontal alignment:
"L" all left;

"I" middle left;

"C" center;

"c" center;

"R" all right;

"r" middle right.

determinate the vertical alignment:
“T" top;

"t up;

"C" center;

"c" center;

"B" bottom;

"b" down.

cHorozontal

cVertical

This function helps with the windows alignment recalculgtand
modifying nTop, nLeft, nBottom and nRight in the way to obtain
the desired alignment.

COPYFILEQ

«

COPYFI LE(cSourceFile cTargetFile] cDevice) = NI L

cSourceFile the source filename.
cTargetFile the target filename.
cDevice the target devicename.

This function copies theSourceFileto cTargetFile or to cDevice

DBAPPQ

«

DBAPP(cFileName, [acFieIdsi ,
[bForConditior] , [bwhileConditior] ,
[nNextRecord}; ,

[nRecorq ,
IRes] ,
cDriver]) = NL
cFileName the f|Ier\amg containing data to append to
the active alias. I .
array of fieldnames indicating the fields
acFields that should be updated on the active alias
(default is all).
a code block containing the FOR conditipn
bEorCondition to respect for the data append. Will be ap-

pended data that makes the evaluation of

this code block True.
a code block containing the WHILE con

dition to respect for the data append. Will
be appended data as long as the evaluation
of this code block is True: the first time it
becomes False, the data appending is|ter-

bWhileCondition

minated.
d if used, means that only the first
nNextRecor nNextRecordswill be appended.
if used, means that that only the record
nRecord nRecordwill be appended.
this option is not available here also if the
IRest function saves a place for it.
. is the optional driver name to use to opgen
cDriver

the cFileNamefile.

This function is used to append data to the active alias usétg
from thecFileNamefile, that in this case is ‘a DBF' file.

DBCLOSEQ

«

‘ DBCLOSE() = NIL

It is a substitution function of DBCLOSEALL() to use insidedm-
piled" macros, as a true DBCLOSEALL() will close the macre fil
too.

1211

DBCONTINUEQ

DBOONTI NUE() = NI L

This function resumes a pending DBLOCATE().
DBCOPY()

«

DBCOPY(cFileName, [acFieldi ,
[bForConditior] , [bwhileConditior]
[nNextRecord} ,
[nRecon] ,
IResi ,
cDriver]) = NIL

the target filename for the data contained

cFileName S . :

inside the active alias,

array of fiel[dnames indicating the fields
acFields that should be used from the active aljas

(default is all).

a code block containing the FOR conditibn
bForCondition to respect for the data copy. Will be copied

the data that makes the evaluation of this

code block True.
a code block containing the WHILE con-

dition to respect for the data copy. \/\?II
be copied data as long as the evaluation
of this code block is True: the first time it
becomes False, the data copying is termi-

nated. .
if used, means that only the first

bWhileCondition

nNextRecord nNextRecordswill be copied.

if used, means that that only the record
nRecord nRecordwill be copied.

if used means that only the remainihg
IRest records inside the active alias are copied.
cDriver is the optional driver name to use to opgen

the cFileNamefile.

This function is used to copy data t¥ileName form the active
alias.

DBCOPYSTRUCTO

«

DBCOPYSTRUCT(cDatabase [acField) = NIL

is a structure. DBF file that will be filled
cDatabase with structure information about the active
alias.
- is an array of fieldnames that should |be
acFields h . .
taken into consideration.

This function creates a structureDBF’ file copying the structure of
the active alias.

DBCOPYXSTRUCTO

DBCOPYXSTRUCT(cExtendedDatabase) = NI L

is a structure. DBF file that will be filled
with structure information about the active
alias, accepting extended structure infor-
mations.

cExtendedDatabase

This function creates a structureDBF’ file copying the structure of
the active alias. This function accept non-standard stracthat is,
the extended structure available inside Clipper.

DBDELIMO

1212

DBDELI M ICopyTo, cFileName, [cDeIimiter] , [acFieId% ,
bForCondition] , | bWwhileConditior] ,
nNextRecord§ , nRecorc] , [IRes]) = NIL

if True the function work copying data to
cFileName from the active alias, if False
the function work appending data from

cFileNameto the active alias.
the filename containing data to append to

the active alias or to use as the target of the
data copy from the active alias.
the delimiter string (or character) used|to
separate fields insideFileName
array of fieldnames indicating the fields |of
the active alias that should be taken into
consideration (default is all).
a code block containing the FOR conditibn
to respect. The operation will be made for
all records that respect the condition.
a code block containing the WHILE con-
dition to respect. The first time it becomes
False, the operation is terminated.
if used, means that only the first

ICopyTo

cFileName

cDelimiter

acFields

bForCondition

bWhileCondition

nNextRecord nNextRecordswill be appended/copied.

if used, means that that only the record
nRecord nRecordwill be appended/copied.
IRest if used means that only the remainihg

records will be taken into consideration.

This function is used to append data to the active alias usatg
from the cFileNamefile or to copy data intaFileName using the
active alias as the sourceFileNameis a delimited ASCII file.

DBISTATUSQO

«

‘ DBl STATUS() = cDBInformations

This function returns the informations on the active aliasitext
form.

DBISTRUCTUREQ

«

‘ DBI STRUCTURE() = cTextStructurel NI L

This function returns the structure information on the\actlias in
a text form.

DBJOINO

«

‘ DBJO N(cAlias, cDatabase
[acFiequ , [bForCondition]) = NL

the name of the alias to use to merge with

records from the active alias.
the target. DBF’ filename.

the array of fieldnames which represent the
projection of fields form both Aliases int
the new*. DBF' file. If not specified, al
fields from the primary work area are in
cluded in the target DBF file.

cAlias

cDatabase

[=]

acFields

This function creates a new database file by merging seleetedds
and fields form two work areas (Aliases) based on a generalicon
tion. It works by making a complete pass through the secgndar
work areacAlias for each record in the primary work area (the ac-
tive alias), evaluating the condition for each record ingheondary
work area. WherbForCondition is evaluated True, a new record is
created in the target database fileatabaseusing the fields speci-
fied from both work areas insidecFields

1213

DBLABELFORMO

DBLABELFORM cLabel, [IToPrinter] , [cFiIe] ,
[INoConsolq , [bForCondition] , [bwhileConditio
[nNextRecord};, [nRecor(] , [IRes] , [ISampI%)
= NL

is the name of the Tabel file ((LBL) that

cLabel contains the label format definition.
. if True, the output is copied to printer
IToPrinter (LPTL:").
. if present, it is the name of a ASCII file

cFile where the output is copied.

INoConsole if True, the output is not sent to the consale.
a code block containing the FOR conditibn

bForCondition to respect for label print. Only the records

contained inside the active alias that fe-
spect the condition will be used for labels.
a code block containing the WHILE condi-
tion to respect for the label print. The firs
time that the condition is False, the label
print terminates.
if used, means that only the first

—

bWhileCondition

nNextRecord nNextRecordswill be used.

nRecord if used, means that that only the record
nRecordwill be used.

IRest if used means that only the remainipg
records inside the active alias will be used.

ISample if True displays test labels as rows of asﬂer—
isks.

This function prints labels to the console.

DBLISTO

DBLI ST([IToDispIa)] , abListColumns
[IAII] ,
[bForConditiun] , [bWhiIeConditiori ,

nNextRecord};, [nRecorc] , [IRes] ,
IToPrinter], [cFiIeName})

if True the printout is sent to the consdle
screen. i]

is an array of columns expressions to list.
if True prints all the records contained ip-

IToDisplay

abListColumns

IAll . . ;

side the active alias. _

a code block containing the FOR conditipn
bForCondition to respect. Only the records contained |in-

side the active alias that respect the condi-

tion will be used for list.)
a code block containing the WHILE condi-

tion to respect. The first time that the can-

dition is False, the list terminates.
if used, means that only the first

bWhileCondition

nNextRecord nNextRecordswill be used.
if used, means that that only the record
nRecord .
nRecordwill be used. .
IRest if used means that only the remainihg
records inside the active alias will be used.
IToPrint if True, the output is copied to printer
oPrinter (LPTL:).
. if present, it is the name of a ASCII file
cFileName

where the output is copied.

This function prints a list of records to the console.

DBLOCATEQ)

DBL OCATE([bForCondition] , [bWhiIeCondiIior] ,
[nNextRecord}, [nRecorc] , [IResﬂ) = NIL

a code block containing the FOR conditipn

to respect. Only the records contained |in-
side the active alias that respect the condi-
tion will be taken into consideration.

bForCondition

1214

a code block containing the WHILE condi-
tion to respect. The first time that the can-

dition is False, the locate terminates.
if used, means that only the first

bWhileCondition

nNextRecord nNextRecordswill be used.

if used, means that that only the record
nRecord)

nRecordwill be used. .
IRest if used means that only the remainihg

records inside the active alias will be used.

This function searches sequentially for the first recordcimag the
FOR and WHILE conditions. Once a DBLOCATE() has been issued
you can resume the search from the current record pointéiqos
with DBCONTINUE().

The WHILE condition and the scopallextRecord nRecordand
IRes?) apply only to the initial DBLOCATE() and are not operatibna
for any subsequent DBCONTINUE() call.

DBOLDCREATEQ

«

‘ DBOLDCREATE(cDatabase cExtendedDatabase
[coriver] , [INew] , [cAlias]) = NIL

is the name of the new database file, with
an optional drive and directory, specified
as a character string. If specified withqut
an extension (.dbf) is assumed.
is a‘. DBF file containing the structure in-

formation of the file to create. I
specifies the replaceable database driver

(RDD) to use to process the current work
area.cDriver is the name of the RDD spe¢
ified as a character expression.

if True the newly created. DBF file is
opened using the next available work area
making it the current work area (the active
alias).
if INewis set to True, this is the alias name
to use to open the file.

cDatabase

cExtendedDatabase

cDriver

INew

cAlias

This function is a old database function (superseded forrCRB-
ATE()) that creates a database file from the structure inébion
contained inside a structure file.

DBPACKO

«

‘ DBPACK() = NIL

This function eliminates definitively the active alias ret® previ-
ously signed for deletion. It works only if the active aliasopened
in exclusive mode.

DBSDFO

«

DBSDF(ICopyTo, cFileName, [acFieId:i,
bForCondition| , bWhiIeConditior] s
nNextRecord§ , nRecorc], [IRes]) = NIL

if True the function works copying data to
cFileName from the active alias, if False
the function work appending data from

cFileNameto the active alias.
the filename containing data to append to

the active alias or to use as the target of the
data copy from the active alias.
array of fieldnames indicating the fields|of
the active alias that should be taken into
consideration (default is all).
a code block containing the FOR conditipn
to respect. The operation will be made for
all records that respect the condition.
a code block containing the WHILE con-
dition to respect. The first time it becomes
False, the operation is terminated.
1210

ICopyTo

cFileName

acFields

bForCondition

bWhileCondition

NextR d if used, means that only the first
nivextrecor nNextRecordswill be appended/copied.
R d if used, means that that only the record
nRercor nRecordwill be appended/copied.
if used means that only the remainihg
IReset) . : .
records will be taken into consideration.

This function is used to append data to the active alias usatg
from the cFileNamefile or to copy data intaFileName using the
active alias as the sourceFileNameis a SDF ASCII file.

DBSORT(Q
DBSORT(cDatabase [acFieldq ,

bForCondition| , | bWhileConditio
nNextRecord§ , nRecor(], [IResﬂ) = NIL

the*. DBF file to create.
the array of fields to be used to create the

new sorteccDatabasefile. .
a code block containing the FOR conditipn

to respect. Only the records contained |in-
side the active alias that respect the condi-

tion will be taken into consideration.)
a code block containing the WHILE condi-

tion to respect. The first time that the can-
_dition is False, the sort terminates.

cDatabase

acFields

bForCondition

bWhileCondition

if used, means that only the first
nNextRecord nNextRecords inside the active alias

will be used.

if used, means that that only the record
nRecord .

nRecordwill be used. -
IRest if used means that only the remainihg

records inside the active alias will be used.

Copy the active alias to‘aDBF’ file in sorted order.

DBTOTALO

DBTOTAL(cDatabase bKey, [acFieldq ,
bForCondition] , | bWhileConditior] ,
nNextRecord§ , nRecor(] , [IRes]) = NIL

the *. DBF file to create that will contain

cDatabase the copy of summarised records.
the code block key expression that should
bKey correspond to the key expression of the jac-
tive index of the active alias.
- the array of fields to be used to create the
acFields :
new cDatabasdile. .
a code block containing the FOR conditibn
bEorCondition to respect. Only the records contained |in-

side the active alias that respect the condi-

tion will be taken into consideration.)
a code block containing the WHILE condi-

tion to respect. The first time that the can-

dition is False, the sort terminates.
if used, means that only the first

bWhileCondition

nNextRecords nNextRecords inside the active alias

will be used.

if used, means that that only the record
nRecord .

nRecordwill be used. .
IRest if used means that only the remainipg

records inside the active alias will be used.

This function summarises records by key value to BBF file. It
sequentially process the active alias scanning the spetsifiepe of
records. Records with the same key will be summarised irtbiele
destinatiort. DBF’ file. The value of numeric fields of records with
the same key are added.

DBUPDATEQ

DBUPDATE(cAlias, bKey, [IRandorr], [bRepIacemel]t)

1216

is the alias containing data to be used to
update the active alias.
is a code block expression using informa-
tion form thecAlias to obtain a key to refer

to the active alias.] .
if True, allows record in theAlias to be in

any order. In this case, the active alias must
be indexed with the same key bKey.
is the code block that will be executed
when records matches: it should contains
the criteria for data update. ‘T

cAlias

bKey

IRandom

bReplacement

This function updates the active alias with data from anoth8F
file.

Example:
[dbUpdate("INVOCE', {|| LAST}, .T.,;
{I] FIELD >TOTALL := | NVOl CE->SUML, ;
FI ELD->TOTAL2 := | NVO CE->SUMR })
DBZAPQ

«

‘ DBZAP() = NIL

This function erases immediately all the records containgide the
active alias.

DISPBOXCOLOR(O

«

DI SPBOXCOLOR([nCoIorNumbe] , [cBaseCoIo]) = cColor

may be 1 or 2 and are the two color used to
create shadowed borders. 1 is usually used
for the left and top line; 2 is used for the
right and bottom line.
is the starting color string. The default|is
the actual color.

nColorNumber

cBaseColor

This function return a color string used for DISPBOXSHADOW(
the function that create a shadowed border around a screetowi

DISPBOXSHADOW()

«

‘ DI SPBOXSHADOW nTop, nLeft, nBottom, nRight,
[cBoxstring . [cColor]] , [cColord) = NL

nTop, nLeft, nBottom] are the screen coordinate where the box is
andnRight to be displayed.
is the box string containing the character to
cBoxString use to build the box. Default is a single line
box.
is the color string to use for the left and tbp
cColorl .
side of the box,
cColor2 is the color string to use for the right and
bottom side of the box.

This function draws a screen box like DISPBOX() but allowtheg
variation of colors around the border to simulate a sort afisiw.

DIRO

«

‘ DI R(cFiIeSpeq , IDrives] , [IDirs] , [IFiIes] ,
INoDirReturn] [nSonCqumr]) = cPathname

the filename or Pathname, also with wild-

cHileSpec cards, to be searched.
IDrives true (. T.’) means: include drives letters.
IDirs true (.T.”) means: include directory
names.
IFiles true (. T.’) means: include file names.
) true (. T.’) means: do not return the
INoRirReturn shown directory if Esc] is used to exit.

1217

the column number to use to sort the Tist.
The columns are:

Name =1,

Size =2,

Date = 3,

Time = 4,

Attribute = 5.

It is not possible to sort for extention.

nSortColumn

It is a window function useful to search a file or a directonheT
complete pathname of the selected file is returned.

DOCO

DOC([cTextFiIeNamq) = NIL

cTextFileName if empty, the editing of UNTI TLED. TXT’

will start.

can contain the text file to open and eTit;

Itis the nB Text editor useful for small text files (less thetK$ and
contains a complete menu that can be started [ﬁn.q

Attention: doc() should not be used inside macros. ‘

DOTLINEQO

DOTLINE() = NIL

This function is a "dot" command line useful for calculagomeso-
lution. The dot-line content may be passed to the keyboafférbu

DTEMONTHO

Date of month

DTEMONTH(nMonth,

cLanguage) = cMonth

nMonth

the month number.

cLanguage

the language name.

This function translates theMonth number into the month name
translated using theLanguagelanguage.

DTEWEEKQ

Date of week

DTEWEEK(nWeek clLanguage) = cWeek

is the week number (1 is Sunday, 7 is Sat-
urday) to be translated into text.
is the language name into which the week
must be expressed. Atthe moment it works
only for Italian, socLanguagecan only
contain "ITALIANQO".

nWeek

cLanguage

This function translates the week number into the week naams+t
lated using theLanguagelanguage.

EXO

Execute

EX(cFileMacro) = nExitCode

Executes the macro fileFileName The extention must be speci-
fied.

cFileMacro may be the name of a "compiled" macro or a text macro
file.

1218

GETO

«

‘ GET(@GetList,

[nTop] , [nLeft] ,

{ |x] iif(pcount() > 0, Var := x,
cGetPicturq , [cCoIorString] s
bPreExpressio]1, [bVaIid])

Var) }

is the get list array that will be increased
with this get().
define the starting position of this get gb-
ject on the screen.
is the variable that is to be edited with this
Var get. Var is in fact sent to the GET() func-
tion using a code block.

is the get picture to use fofar.

is the color string to use for the get.
is a code block that will be evaluated Re-
fore the get object will became active. |1t

aGetList

nTop andnLeft

cGetPicture
cColorString

bPreExpression must result True to obtain that the get ob-
ject became active.
is a code block that will be evaluated after
bvalid the get object is edited. It must result True

to obtain that the get object may become
inactive.

Create screen editing masks.

GVADDQO
«

Get validation add

‘ GVADD(@Field, cAdd) = .T.

cField the field to fill with more data.

is the string to be added to the content of
cAdd .

cField.

This function is to be used inside GETs for pre/post val@gtivhen
a the content of a field should be added with more data.

cField is returned with the same length as before to avoid troubles
with current and future GETs.

GVDEFAULT()
«
Get validation default

GVDEFAULT(@fField, cDefault) = .T.

) the field to check and if empty correct with
@cField cDefault.
cDefault is the default value to be used to replace
cField.

This function is to be used inside GETs for pre/post val@gtivhen
a field should have a default value.

cField is returned with the same length as before to avoid troubles
with current and future GETs.

GVFILEDIRO)
«
Get validation file directory

‘ GVFI LEDI R(@WildName) = . T.

‘ cWildName is the file name taken from the current gfet

to be used for search with DIR().

This function is to be used inside GETs for pre validatione th
cWildNameis a file name with wild cards that can be searched with
the DIR() function after that a specific key is pressed.

cWildNameis returned with the same length as before to avoid trou-
bles with current and future GETs.

1219

«

GVFILEEXISTO

ISMEMVARQ

«

GVFI LEEXI ST(@NameToTest [cExtention]) = ISuccess

is the file name taken from the current get
to test for existence.
is the normal extention of the file.

@cNameToTest
cExtention

This function is to be used inside GETs for post validatidre file
name have to exist.

cNameToTests returned with the same length as before to avoid
troubles with current and future GETs.

GVFILEEXTENTIONQ

GVFI LEEXTENTI ON(@Name cExt) = . T.

@cName the file name to be eventually corrected
with file extention.
cExt the file extention to use as default.

This function is to use inside GETSs for pre/post validatiwhen the
content of a field should contain a file name that should bescted
adding a default extention if not given from the user.

GVSUBSTO

GVSUBST(@fField, cSubst) = .T.

@ckField the field to be replaced witbSubst
cSubst is the string to be used to replace the cbn-
tent of cField.

This function is to use inside GETSs for pre/post validatiwhen the
content of a field should be replaced with other data.

cField is returned with the same length as before to avoid troubles

with current and future GETSs.

HTFO

HTF([ninitialRecord]) = NIL

is the record number where to start the
Help Text File browse. Default is the ac
tual record pointer.

ninitialRecord

This function browse a Help Text File that must be alreadynepe
and be the active alias.

ISFILEO

I SFILE(cName) = IFileExists

is the file name (with or without path) to ?e

cName checked for existence.

This function returns true (T. *) if the file cNameexists. The dif-
ference between this function and the standard FILE() fands
that ISFILE() checks for wildcards before.dNamecontains wild-
cards, the result is false . *).

ISWILDO

| SWLD(cName) = liswild

cName

is the file name (with or without path) to be
checked for wildcards presence.

This function returns true (T. *) if cNamecontains wildcards.

1220

| SMEWAR(cName) = llsMemvar

| cName | is the name of a possible memvar. \

This function returns true (T.) if the cNameis a declared Mem-
var.

ISCONSOLEONQ

«

| SCONSOLEON() = IConsolelsOn

This function returns true (T. ') if the console will show the result
of QOUT() and QQOUTY().

ISPRINTERONQ)

«

| SPRI NTERON() = IPrinterlsOn

This function returns true (T.) if the default printer will report the
the result of QOUT() and QQOUT().

The default printer iSPRN: * or ‘LPT1: *. If SET ALTERNATE TO is
configured to send outputstioPT2: * or another printer, the function
will report false (. F.).

KEYBOARD(

«

KEYBOARD([cString]) = NL

This function stuff a string into the keyboard buffer.

LISTWINDOW(Q

«

‘ LI STWNDOW acMenultem, [cDescriptior] ,
nTop] s nLefl] , [nBollom] s [nRight] s
cColorToq , [cCoIorBod)]) = nPosition

is the character array containing the list of
acMenultem

choices. .

cDescription is the header to be shown at the top wjin-
dow.

nTop, nLeft, nBottom, . .

nRight are the window coordinates.

cColorTop is the color to use for window header ahd
footer.)

cColorBod is the color to use for the window body that

Y is the space where the text appears.

This function is an similar to achoice(), but it shows a heaatel
footer, and it saves the screen, acting like a window.

MEMOWINDOW()

«

‘ MEMOW NDOW(cVar, [cDescriptior] , [nTop] , [nLeﬂ] ,
nBonon] , [nRight] , [cCoIorTop] , [cCoIorBod)] ,
IEditMode] , [nLineLength] , [nTabSiz§) = cVar

cVar is the character field (variable) to be edited.

cDescription is the header to be shown at the top win-
dow.

nTop, nLeft, nBottom,] .

nRight are the window coordinates.

cColorTop is the color to use for window header and
footer.

cColorBod is the color to use for the window body that

Y is the space where the text appears.

IEditMode is equivalent to memoedit().

nLineLength is equivalent to memoedit().

nTabSize is equivalent to memoedit().

1221

This function lets you easily edit a long character field (rogdefin-
ing automatically a simple window and providing a simplephel

MEMPUBLICQ

«

MEMPUBLI C(cMemvarNam# acMemvarNames) = NI L

is the name of the PUBLIC variable to cre-
cMemvarName ate (max 10 characters).

is an array of PUBLIC variable names [to
acMemvarNames create (max 10 characters).

Creates a PUBLIC variables or a group of variables.

MEMRELEASE(Q)

«

MEMRELEASE(cMemvarNam¢ acMemvarNames) = NI L

is the name of the PUBLIC variable to be

cMemvarName

released. .

is an array of PUBLIC variable names [to
acMemvarNames

be released.

This function releases a previously created PUBLIC vaeslr a
group of variables.

MEMRESTOREQ)

«

MEMRESTORE(cMemFileName [IAdditive]) = NL

the memory file (MEM) to load from disk.
if True causes memory variables loaded
from the memory file to be added to the ¢
isting pool of memory variables. If Falsg,
the existing memory variables are automat-
ically released.

cMemFileName

x

IAdditive

Retrieve memory variables form a memory file (MEM).

MEMSAVEQ

«

MEMBAVE(cMemFileName [cSkelero.], [ILike]) = NL

the memory file (MEM) where public

variables should be saved.
the skeleton mask for defining a group

of variables. Wildcard characters may be

used: _* and _7? .
if True, the variables grouped w%h

cMemFileName

cSkeleton

ILike cSkeletonare saved, else only the other
variables are saved.

Saves memory variables to a memory file (MEM).

MENUPROMPT(O

«

MENUPROWVPT(@oGet
nROV\] , nCoI] ,
cPromp] , [bBIock]) = NIL

is an array of get objects where a new get
aoGet is added by MENUPROMPT(). These gets
are read only.

nRowandnCol prompt will appear.
cPrompt is the menu prompt string.

is the code block to execute when the cur-
bBlock sor is on the current menu prompt. It|is

usually a code block that shows a message
somewhere on the screen.

This function should substitute the. @ ROMPT command and han-
dle the mouse.

1222

are the screen coordinates where the menu

MENUTOQ

«

MENUTQ(aoGet nPos) = nChoice

aoGet array of get objects.
nPos starting position to be edited.

Like MENU TO. It returns the selected menu item created with
MENUPROMPTY(). It supports the mouse.

MESSAGELINEQ

«

MVESSAGEL I NE([cMessag}a, [cCoIor] , [nPosTo;] , [nPosLef])
= NL

aMessage the message to be displayed.
cColor the color string.

the starting position where the string mes-
sage would appear on the screen. Default
values are respectively ROW() and COLY().

nPosTopandnPosLeft

MESSAGELINE() is a function that display a message on thesscre
on the selected position. tMessagéas NIL, the message is elimi-
nated from screen restoring the previous screen content.

MOUSESCRSAVEQ

«

‘ MOUSESCRSAVE([nTop] , [nLeﬁ] , [nBonon] , [nRigm])
= cSavedScreen

nTop, nLeft, nBottom| are the screen coordinates that will be| to
andnRight save the screen.

This function works line SAVESCREEN() but it hide the mouse-c
sor before a screen save is made.

MOUSESCRRESTORE()

«

‘ MOUSESCRRESTORE([nTop] , [nLeft] , [nBottom] , [nRighl] ,
[cScreel]) = cSavedScreen

nTop, nLeft, nBottom| are the screen coordinates where the saved
andnRight screen will be restored.
cScreen is the previously saved screen to restore.

This function works line RESTSCREEN() but it hide the mouse ¢
sor before a screen restore is made.

PICCHRMAXO

«

Pl CCHRIVAX([nCoI] , [nMaxCoI]) = cPictureString

Col is the starting position on the screen for the
nto get field.
AMaxCol :(ise:ge end position on the screen of the get

This function is useful when a character field is to be used geta
object. The generated picture will be the of the maximum ipdess
extention, eventually with scroll.

QUITO

«

QIT) = NIL

Terminates program execution.

1223

«

READO

READ(aoGet [nPoi , [aBunoni , [IReadOnI)])

= |Updated
aoGet is the array of get objects.
nPos is the starting position.
aButtons is the array of buttons.
IReadOnly if True, get flglds cannot be modified; the
default value is False.

This function is made to substitute the READMODAL() allowing
the use of the mouse. The arraButtonsis made with the help of
the function BUTTON().

RFO

RF(cFRMName,
[bForConditiun] , [bWhiIeConditior] ,
[nNext] , [nRecorc] , [IResﬂ , [IPIain] ,
[cheadin? , [IBeforeEjec] , [ISummar)] ,
IDate] , acExtra]) = NIL

the form (.FRM) file to use to print the a¢
tive alias.

code block for the FOR condition.
code block for the WHILE condition.
see REPORT FORM.

see REPORT FORM

see REPORT FORM

if true (. T.”), force the print in a simple
way.
additional header in character or code
block form. If a code block is sent, the final
result must be a character string.
iftrue (. T."), force a form feed before the
print.
if true (. T.), force a summary print only.
if false (. F. "), force the print without date
at the top of page.
a character array that may be used |for
translating standard printed report form
words and to add vertical and horizontal
separations. The default value of acExtra
is:

acExtra[1] "Page No."

acExtra[2] "** Subtotal **"

acExtra[3] "* Subsubtotal *"

acExtra[4] "*** Total ***"

acExtra[5] " " vertical column separation
axExtra[6] "™ horizontal separation: no
separation.

cFRMName

bForCondition
bWhileCondition
nNext

nRecord

IRest

IPlain

cbHeading

IBeforeEject

ISummary

IDate

acExtra

This function does the same work of REPORT FORM or __Report-
Form or dbReportForm, but it prints where qout() and qqaqutift.

RPTO

RPT(cText) = NIL

This function prints the text contained intdext using print com-
mands. This function accepts other parameters here notildedc
as they are not to be used for macro purpose. The printing d&ma
using QOUT() and QQOUTY(), this way it is sensible to the 'lalte
nate" file definition.

RPTMANYQ

RPTMANY(cText, [bWhiIeConditior], [bForCondition])
= NL

1224

is the text to be printed.
is a code block for a WHILE condition to
respect for the records to print.
is a code block for a FOR condition to re-
spect for the records to print.

cText
bWhileCondition

bForCondition

This function prints the text contained intdext many times: one
for every record contained into the active alias.

RPTTRANSLATEQ

«
‘ RPTTRANSLATE(cText) = cTranslatedText

This function translates onceText replacing variables with mem-
vars or Fields.

RUNO

«

RUN(cCommand) = N L

This function start execution adCommandin a DOS session. It
works only if there is enough available memory.

SAY(

«

‘SAY(nTop, nLeft, Expr,
[cSayPictu@ , [cCoIUrString]) = NIL

define the starting position on the screen
where theExpr should be displayed.
is an expression that will be solved and dis-
played.

is the picture to use to displeyxpr.
is the color string to use.

nTop andnLeft

nLeft

cSayPicture
cColorString

This function displays the result &Xxpr on the screen on the desired
position.

SETCOLORSTANDARDQ

«

SETCOLORSTANDARD([nCoIor], [cCOI0r| acCoIoﬂ)
= cPreviousCoIot acPreviousColor

is the color number to take into considefa-
tion:

0 All colors

1 Base

2 Menu

3 Head

4 Body (Say - Get)

5 Button (Mouse buttons)
6 Message

7 Alert

the color string to be associated with
nColor.

it the color array

nColor

cColor

acColor

This function is a way to handle colors inside the applicatidhe
functions that display something use a default color dejpgndn
what they does. These colors may be changed with SETCOLOR:
STANDARDY(), all together or only one.

SETFUNCTIONO

«

SETFUNCTI ON(nFunctionKey, cString) = N L

nEunctionKe the number of the function key (I=F1,
y 12=F12) to be assigned.
cString the character string.

This function assigns a character string to a function kbgdtete).
1225

SETMOUSEQ logical or code block, is the eject mode|to

« IbEject set. Default is no change, the starting vajue
) is'.F.’
SETMOUSE([IShOV\])= IPrevious
True shows the mouse cursor, False Hide SETRPTLINES()
IShow the mouse cursor, NIL reports only the sta- «
tus.

SETRPTLI NES() = nRemainingLines

This function is made to show, hide or report only the moussau - — - -
This function is used to report the number of lines availdigéore

status. ! _
the completion of the page print for RPTY().
SETOUTPUTO
« SETVERB(O
«
SETOUTPUT([cPeriperal aPeriphera]) Set verbose

= aPrevious_Output_Peripherals
SETVERB(cSpecifiet [xNewSening, [IOpenModq)

cPeripheral is the new output peripheral for gqout() ahd — xPreviousvalueSet
gqout() functions.]]
aPeripheral are the new output peripherals _conflgura- cSpecifier a word tha_t defines the kind of set is goihg
tions for qout() and qgout() functions. to be considered.
xNewSetting is the new value to set up.
nB is organised in the way to have only one output periphertiea IGpenMode used only for some kind of set.

time. This function help to make order inside SET CONSOLET SE] o)))
PRINTER and SET ALTERNATE. This function is analogue to SET() but it uses a charactergsfwith
cSpecifie) and not a number to select the set. This is made to make

If cPeripheralcontains: easier the work with macros.

"CON" cSpecifiermay contain:
SET CONSOLE is set to ON, "EXACT"
SET PRINTER is set to OFF, "FIXED"
SET ALTERNATE is set to OFF; "DECIMALS"
"PRN" "DATEFORMAT"
SET CONSOLE is set to OFF, "EPOCH"
SET PRINTER is set to ON, (PATH"
SET ALTERNATE is set to OFF; DEFAULT
. . "EXCLUSIVE"
LPT1 "SOFTSEEK"
same as "PRN"; "UNIQUE"
otherwise "DELETED"
SET CONSOLE is set to OFF, 'CANCEL"
SET PRINTER is set to OFF, "TYPEAHEAD
SET ALTERNATE is set to ON, 'COLOR" |
SET ALTERNATE TO is set ta:Peripheral CURSOR
"CONSOLE"
aPeripheralis organised this way: "ALTERNATE"
aPeriphera[1] = SET_CONSOLE g'I-ET\fIi':-EE
aPeripheral2] = _SET_PRINTER "EXTRA"
aPeripheral3] = _SET_ALTERNATE "EXTRAEILE"
aPeripheral4] = _SET_ALTFILE "PRINTER"
aPeriphera[5] = _SET_EXTRA PRINTFILE
. "MARGIN"
aPeripheral6] = _SET_EXTRAFILE "BELL"
This function is necessary because SET ALTERNATE alone is no "CONFIRM"
enough to print on the screen when the peripheral name is "@©ON "ESCAPE"
to print on the printer when the peripheral name is "PRN" &?TIL". "INSERT"
In fact, in the first case, ROW() and COL() will not be updatied, "EXIT"
the second case, PROW() and PCOL() will not be updated. "INTENSITY"
This function returns an array organised in the same way as "SCOREBOARD"
aPeripheralis, that shows the active output configuration. “DELIMITERS"
"DELIMCHARS"
SETRPTEJECT("WRAP"
« "MESSAGE"
"MCENTER"

SETRPTEJECT([IbEjecl]) = IPreviousEjectMode

This function is used to set the eject mode after every paigéfor SETVERBCEXACT) (obsolete)

RPT(). If single sheet paper is used, then SETRPTEJECTQUst
be set; for continuous paper, SETRPTEJECT(.F.) is corr&tie SETVERB("EXACT", [IExac]) = IPrevious
default value is .F..

«

1226 1227

If IExact is True, it forces exact comparison of character strings,
including length. If it is False, character strings are caneg until
the left string length is exhausted; that is that " (the stiiing) is
equal to any other string.

Please note that the == operator is a comparison operatexéat
match and using it, SETVERB("EXACT", F. ’) will not work.

The starting value is True; the recommended value is True.

SETVERB('FIXED")

SETVERB(" FI XED', [IFixed]) = IPrevious

If IFixed contains True, numeric values are displayed ever with
a fixed number of decimal digits, depending on the value set by
SETVERB("DECIMALS").

The starting value is False.

The recommended value is False: if you have to display a fixed n
ber of decimal digits it is better to define a good displayumiet

SETVERB('DECIMALS")

SETVERB(" DECI MALS", [nDecimaI:i) = nPrevious

nDecimalsis the number of digits to display after the decimal posi-
tion. This set is enabled of disabled with SETVERB("FIXED")

The starting value is 8.

SETVERB('DATEFORMAT")

SETVERB(" DATEFORMAT", [cDateForma]) = cPrevious

cDateFormatis a character expression that specifies the date format
The starting value is "dd/mm/yyyy".
Some date format examples:

AMERICAN "mm/ddlyyyy"
ANSI "yyyy.mm.dd"
BRITISH "dd/mm/yyyy"
FRENCH "dd/mm/yyyy"
GERMAN "dd.mm.yyyy"
ITALIAN "dd-mm-yyyy"
JAPAN "yyyy/mm/dd"
USA “mm-dd-yyyy"

SETVERB("EPOCH")

SETVERB(" EPOCH", [nYeaﬂ) = nPrevious

nYear specifies the base year of 100-year period in which all dates
containing only two year digits are assumed to fall.

The starting value is 1900.
SETVERB('PATH")

SETVERB(" PATH', [cPatr]) = cPrevious

cPathidentifies the paths that nB uses when searching for a file not
found in the current directory. The list of paths can be safearby
commas or semicolons.

The starting value is ™.

1228

SETVERB("DEFAULT")

«

SETVERB(" DEFAULT", [cPatr]) = cPrevious

cPathidentifies the default disk drive and directory.
The starting value is ™

SETVERB("EXCLUSIVE")

«

SETVERB(" EXCLUSI VE", [IEchusivﬁ) = IPrevious

If IPath is True, the default database (.DBF) file open is made in
exclusive mode; in the other case, in shared mode.

The starting value is True.

SETVERB("SOFTSEEK")

«

SETVERB(" SOFTSEEK", [ISoftSeei) = IPrevious

If 1SoftSeekis True, if a DBSEEK() index search fails, the record
pointer is moved to the next record with a higher key. If it &de,

in case of a DBSEEK() index search failure, the record poiiste
moved at EOF().

The starting value is False.

SETVERB("UNIQUE") (obsolete)

«

SETVERB(" UNI QUE", [IUnique]) = IPrevious

If lUnique is True, during creation or update ofDBF indexes,
if two or more records are found with the same key, only thée firs
record will be included inside the index.

If IlUnique is False, duplicated record keys are allowed.
The starting value is False.

SETVERB("DELETED")

«

SETVERB(" DELETED", [|De|eteq) = IPrevious

If IDeletedis True, record signed for deletion are not filtered, that is,
these are still normally visible as they were not deletedhéother
case, they hare (in most cases) hidden to the user.

The starting value is False.

SETVERB("CANCEL")

«
SETVERB(" CANCEL", [ICanceH) = IPrevious

If ICancelis True, enablesAlt c] and [Ctrl Break] as termination
keys. In the other case, not.

The starting value is True.

SETVERB('TYPEAHEAD")

«

SETVERB(" TYPEAHEAD', [nTypeAheag) = nPrevious

nTypeAheadis the number of keystrokes the keyboard buffer can
hold from a minimum of zero to a maximum of 4096.

The starting value is 15.

SETVERB("COLOR")

«
SETVERB("COLOR', [cCoIorStrinq) = cPrevious

nColorString defines the normal screen colors. There are five cou-
ple of colors, but only three are really operative:

1229

«

This is the standard color used for scréen

standard output.

This is the color used for highlighted
enhanced screen output.
border Normally unused.
background Normally unused.

This is the color used for GET fields with-
unselected

out focus.

The default color string is "BG+/B,N/W,N/N,N/N,W/N" thas:i

standard bright Cyan on Blue
enhanced Black on White
border Black on Black
background Black on Black
unselected White on Black

The following table explains the use of letters inside thieicstring.
Note that the plus sign (+) means high intensity, the stam&gans
blink and that + and * can be allowed only to the first letteidesa

couple.
Color Letter Monochrome |
Black N, Space Black
Blue B Underline
Green G White
Cyan BG White
Red R White
Magenta RB White
Brown GR White
White W White
Gray N+ Black
Bright Blue | B+ Bright Underline
Bright Green| G+ Bright White
Bright Cyan | BG+ Bright White
Bright Red | R+ Bright White
g;'r?t': Ma-| e+ Bright White
Bright GR+ Bright White
Brown
Bright White | W+ Bright White
Black U Underline
I\r;l\ézl;)se Inverse Video
Blank X Blank

SETVERB("CURSOR")

SETVERB(" CURSCR', [ICursor]) = IPrevious

If ICursor is True, the cursor is showed, else it is hidden.
The starting value is True.

SETVERB("CONSOLE")

SETVERB(" CONSOLE", [|Conso|q) = IPrevious

If IConsoleis True, the output of console commands is displayed on
the screen, else it is not.

The starting value is True.

SETVERB("ALTERNATE")

SETVERB(" ALTERNATE", [IAItemate]) = IPrevious

If lAlternate is True, the output of console commands is send also
to a standard ASCI| text file.

The starting value is False.

1230

SETVERB("ALTFILE")

«

SETVERB("ALTFI LE", [cAltemateFilenamq, [IAdditive])
= cPrevious

If SETVERB("ALTERNATE") is True, the output of the consolg i
send also teAlternateFilename a standard ASCII file.

If IAdditive is True, the output is appended to the ASCII file if it
already exists, else it is erased first.

SETVERB('DEVICE")

«

SETVERB(" DEVI CE", [cDevic§) = cPrevious

cDeviceis the name of the device where SAY() will display its out-
put.

The starting value is "SCREEN?", the alternative is "PRINTER
The recommended value is "SCREEN".

SETVERB("EXTRA")

«
SETVERB(" EXTRA", [IExtra]) = IPrevious

If IExtra is True, the output of console commands is send also to a
standard ASCII text file.

The starting value is False.
SETVERB("EXTRAFILE")

«

SETVERB(" EXTRAFI LE", [cExtraFﬂename], [IAdditive])
= cPrevious

If SETVERB("EXTRA") is True, the output of the console is sen
also tocExtraFilename, a standard ASCII file.

If IAdditive is True, the output is appended to the ASCII file if it
already exists, else it is erased first.

SETVERB('PRINTER")

«

SETVERB(" PRI NTER', [IPrinter]) = IPrevious

If IPrinter is True, the output of console commands is also printed,
else itis not.

The starting value is False.
SETVERB("PRINTFILE")

«

SETVERB(" PRI NTFI LE", [cPrimFileName]) = cPrevious

cPrintFileName s the name of the printer peripheral name.
The starting value is ™" (null string).

SETVERB("MARGIN")

«

SETVERB("MARG N, [nPageOffse}) = nPrevious

nPageOffsetis the positive number of column to be used as a left
margin for all printer output.

The starting value is 0.

SETVERB('BELL")

«

SETVERB("BELL", [IBeII]) = IPrevious

If I1Bell is True, the sound of the bell is used to get the attention of
the user when some wrong actions are made.

The starting value is False.
1231

SETVERB("CONFIRM")

SETVERB("DELIMCHARS")

«

SETVERB(" CONFI RM', [IConfirm]) = IPrevious

SETVERB(" DELI MCHARS", [cDeIimterCharacter}) = cPrevious

If IConfirm is False, the GET is simply terminated typing over the
end of the get field; in the other case (True), the GET is teaeith
only pressing an "exit key". The starting value is True.

SETVERB("ESCAPE")

SETVERB(" ESCAPE", [|Escap§) = IPrevious

If IEscapeis True, the Esc] key is enabled to be a READ exit key,
in the other case not.

The starting value is True.
The recommended value is True.

SETVERB('INSERT")

SETVERB(" | NSERT", [Ilnsert]) = IPrevious

cDelimterCharactersare the delimiter characters used to delimit a
GET field when SETVERB("DELIMITERS") is True.

The starting value is "::".

SETVERB("WRAP")

«

SETVERB(" WRAP", [IWrap]) = IPrevious

If IWrap is True, the wrapping of the highlight in MENUs should
be active, but this option is actually not active and all veoals it is
False.

The starting value is False.

SETVERB("MESSAGE")

«

SETVERB(" MESSAGE", [nMessageRo]\/) = nPrevious

If linsert is True, the data editing is in INSERT mode, in the other
case, it is in OVERWRITE mode.

The starting value is True.

SETVERB("EXIT")

nMessageRovis the row number where the @..PROMPT message
line should appear on the screen. This option is not supgorte

The starting value is 0.

SETVERB("MCENTER")

«

SETVERB("EXIT", [IExit]) = IPrevious

SETVERB(" MCENTER', [|Message0em§r) = IPrevious

If IExit is True,|Up| and Dowr] key may be used as exit key when
the cursor is (respectively) on the first or on the last GETdfieh
the other case not.

The starting value is False.
The recommended value is False.

SETVERB('INTENSITY")

SETVERB("I NTENSI TY", [Ilntensity]) = IPrevious

If lintensitiy is True, the display of standard and enhanced display
colors are enabled. In the other case, only standard cotersra
abled.

The starting value is True.
The recommended value is True.

SETVERB("SCOREBOARD")

SETVERB(" SCOREBOARD'", [|Scoreboan]) = IPrevious

If 1IScoreboardis True, the display of messages from READ() and
MEMOREAD)) is allowed; in the order case not.

The starting value is False.
The recommended value is False: nB do not support scoreboard

SETVERB("DELIMITERS")

SETVERB(" DELI M TERS", [IDeIimiters]) = IPrevious

If IDelimitersis True, GET variables appear on the screen delimited
with the delimiter symbols. In the other case, GET variahlesnot
delimited this way, but only with the use of different colors

The starting value is False.

The recommended value is False: the use of delimiters create
more trouble when designing a screen mask.

1232

If IMessageCenteis True, the @..PROMPT message line should
appear centered on the screen. This option is not supported.

The starting value is False.

STRADDEXTENTIONO

«

STRADDEXTENTI ON(cName cExt) = cCompleteName

N the file name (with or without path) thatjis
chame probably without extention.
the extention that must be addedcfdame
cExt o
if it has not one.

This function checkeNamefor the presence of an extention. It it
has not onecExt will be added.

STRCUTEXTENTIONO

«

STRCUTEXTENTI ON(cName) = cName

the file name (with or without path) that jis

‘ cName probably with extention.

This function checkeNamefor the presence of an extention. It it
has one, the extention is removed.

STRDRIVEQ

«

‘ STRDRI VE(cName) = cDrive

the file name (with or without path) thft

‘ cName contains the drive letter.

This function tries to extract the drive letter informatidrom
cName

1233

STREXTENTIONO

«

STRPATHO

«

STREXTENTI ON(cName) = cExtention

the file name (with or without path) that

cName .)
contains an extention.

This function tries to extract the extention informatioarfrcName

STRFILEQ

«

STRFI LE(cName) = cFileName

[cName [the file name with or without path. |

This function tries to extract the file name without path frokeme

STRFILEFINDQ

«

STRFI LEFI NO(cName cPath) = cFileName

cName the file name or pathname containing the
file name to search inside th@athlist.
a list of paths separated with semicolon
cPath (just like Dos does), whereFile should be
searched.

If your file is to be found on different possible positionsistfunc-
tion search the first place where the file is found and retunadid
pathname to that file.

STRGETLENQ

STRGETLEN(xExpr, cPicture) = nFieldLength

XExpr a generic expression.
cPicture the picture string.

This function returns the length of field when usirgxpr with
cPicture.

STRLISTASARRAY ()

STRLI STASARRAY(cList, [cDeIimiter]) = alist

) a character string containing a list sepa-
cList . .
rated withcDelimiter.
. the delimiter used to separate the elements
cDelimiter : oo)
contained inside the list.

This function transform a character string list into an arra

STROCCURSO

STROCCURS(cSearch cTarget) = nOccurrence

cSearch the search string to find insid&Target
CTarget the string to be searched for the presence
of cSearch

This function returns the number of occurrence ttfa¢archis con-
tained insidecTarget

STRPARENTQ

STRPARENT(cName) = cParentPath

| cName [the pathname.

This function tries to return a parent path fraName

1234

STRPATH(cName) = cPath

| cName [the pathname.

This function tries to extract the path frooName

STRTEMPPATHO

«

‘ STRTEMPPATH() = cTempPath

This function returns a temporary path searching for péssiefini-
tions inside the environmental variables.

STRXTOSTRING (O

«

‘ STRXTOSTRI NG xVar, [cTyp%) = cTrasformed_to_string

is the data of any type to be converted into
Xvar string.

is the type of the data contained inside
cType x\Var i

This function returnxVar transformed into a character string.

TBO

«

‘ TB([nTop] , [nLeft] , [nBotton‘] , [nRight] ,
acCoﬂ , [acCoISayPi ,

acCoITopSe]), [acCoIBodySe]), [acCoIBotSe} ,
acCoIHea(] , [acCoIFoo] ,

alColCalq ,

abCoIVaIid] ,

abColMs

cCoIon] , [abCoICoIori ,

nFreezq s

IModify] ,

IAppent] ,

IDeIetq ,

IButtonsl aButtons}) = NIL

nTop, nLeft, nBottom, nRight defines the screen area where
browse have to take place.
is the columns array to be included into the

acCol
browse.
acColSayPic is the picture array.
is the top separation array: default]is
acColTopSep Chr(th4g+§hr(196) —
is the body separation array: default|is
acColBodySep chr(179).
is the bottom separation array: default is
acColBotSep chr(193)+chr(196).
acColHead is the header array for every column.
acColFoot is the footer array for every column.
is the array that identify the calculated cpl-
alColCalc umn (not editable). True'.(T.’) means
calculated.]
is the validation array that specify when a
abColValid field is properly filled. The condition mus
be specified in code block format.
is the message array that permits to show
abColMsg information at the bottom of br0w§e area.
The array must be composed with cqde
blocks which result with a character string.
is the color string: it may be longer than
cColor
the usual 5 elements.
is the color code block array. The cofle
block receive as parameter the value con-
abColColors tained inside the field and must return [an
array containing two numbers: they corre-
spond to the two color couple frooColor.

1235

nEreeze indicates the number of columns to be Ireft
frozen on the left side. .

IModify indicates whether the browse can modify
data.

IDelete indicates whether the browse can delete
and recall records.

IButtons if True, default buttons are displayed.

aButtons array of buttons.

aButtond n][1] N the nth button row position;

aButtong n][2] N the nth button column position;

aButtong n][3] C the nth button text;

aButtong n][4] B the nth button code block.

This function, called without parameters, starts the beowkthe
active alias, and if relations are established, the brondades also
related data.

TIMEN2SQO

«

TI MEN2S(nTime) = nSeconds

is the "time number™ that is a number rép-
resenting days and/or portion of a day: 1 is
1 day or 24 hours, 0.5 is 12 hours, and|so
on.

nTime

This function returns the number of seconds (with eventeai-d
mals) contained insidaTime after subtracting the hours and the
minutes.

TRUESETKEYQ)

«

TRUESETLEY(ninkeyCode bAction) = . T.

Please note that due to an unresolved problem, the field names
contained insideacCol should better contain also the alias
(ALIAS->FIELD_NAME). See also the examples.

TEXTO

TEXT(cText) = NL
Shows the text contained intI¥ext

TGLINSERTO

TGLINSERT() = NIL

Toggle the global insert mode and the cursor shape.

TIMEX2NQ

TI MEX2N([nHH] , [nMM] , [nss]) = nTime

nHH is the number of hours.
nMM is the number of minutes.
nSS is the number of seconds.

This function calculate the "time number" that is a numberee
senting days and/or portion of a day: 1 is 1 day or 24 hoursis0.5
12 hours, and so on.

TIMEN2HO

TI MEN2H(nTime) = nHours

is the "time number" that is a number rep-
resenting days and/or portion of a day: 1 is
1 day or 24 hours, 0.5 is 12 hours, and|so
on.

nTime

This function returns the integer number of hours containsitie
nTime.

TIMEN2MQ

TI MEN2M nTime) = nMinutes

is the "time number™ that is a number rép-
resenting days and/or portion of a day: 1 is
1 day or 24 hours, 0.5 is 12 hours, and|so
on.

nTime

This function returns the integer number of minutes comt@inside
nTime after subtracting the hours.

1236

This function is equivalent to SETKEY() but it returns alvgayT. ’
WAITFILEEVALO

«
‘ WAl TFI LEEVAL(IClose) = .T.
Shows a wait bar calling WAITPROGRESS() for operation on

records of a database.

If there is no index active,
GRES(RECNO()/LASTRECY()).
if an index is active, this cannot work, so an increment faheeall

is made: WAITPROGRES((nIncrement++)/LASTREC()).

This function must be closed calling it with tH€lose parameter
to true (. T.’). This way, internal counters are closed and WAIT-
PROGRESS() is closed too.

WAITFORO

it is equivalent to WAITPRO-

«

‘ WAl TFOR([cMessag]e) = NIL

ShowscMessageuntil it is called again. The wait window is closed
when called without parameter or with NIL.

WAITPROGRESS()

«

‘ WAl TPROGRESS([nPercen])y = . T.

Shows a wait bar on the screen top depending on the valueicedta
into nPercent nPercentstarts form 0 and ends to 1 (100%). If a
value of one or more, or NIL is passed, the wait window is dalose

Normal command substitution

«
Clipper works only with functions and commands that are eoted
into function using theSTD. CH. Here are described some com-
mand replacement that can be used also with nB macros.

?

? [exp_lis]

qout ([exp_lis])

?2? [expﬁlis]

ggout ([expﬁlis])

@BOX

@ nTop, nLeft, nBottom, nRight BOX cnBoxString [COLOR cColorString

]

1237

di spbox(nTop, nLeft, nBottom, nRight, [anoxStrinq. [
cCoIorStrinq)

@TO

@nTop, nLeft TO nBottom, nRight DOUBLE [OOLOR cColorStrinq

di spbox(nTop, nLeft, nBottom, nRight, 2 [,cCoIorStrinq)

@ nTop, nLeft TO nBottom, nRight [CCLCR cCoIorStrinq

di spbox(nTop, nLeft, nBottom, nRight, 1 [,cCoIorStrinq)

@ nTop, nLeft CLEAR [TO nBottom, nRight]

scrol | ([nTop] , [nLeﬁ] , [nBottom, nRight])

set pos(nRow, nCol)

@GET

@nTop, nLeft GET Var [PI CTURE cGetPicturq [co_OR cColorStrinq
[W-EN IPreExpressiofI -
%[VALI D IPostExpressio]1

set pos(nTop, nLeft)

aadd(GetlList, _GET_(Var, "Var", cGetPicture [
{1 IPostExpressioﬂi] Lo
;’[{1 IPreExpression)]):display()) atail(GetList):colorDisp

@SAY

@ nTop, nlLeft SAY exp [COLOR cCoIorStrinq

devpos(nTop, nLeft)

devout (exp [, cCoIorStrinq)

@nTop, nLeft SAY exp Pl CTURE cSayPicture[COLOR cCoIorStrinq

devpos(nTop, nLeft)

(cColo

devout pi c(exp, cSayPicture [cCoIorStrinq)

APPEND

CLEAR

APPEND BLANK

dbappend()

CLEAR

Scrol | ()

1238

Set Pos(0, 0)

ReadKi | 1 (. T.)

GetList := {}

CLEAR GETS

ReadKi | 1 (. T.)

GetList := {}

CLEAR SCREEN | cLs

Scrol | ()

Set Pos(0, 0)

CLOSE

CLCSE

dbd oseArea()

CLCSE idAlias

idAlias- >(dbCl oseArea())

CLOSE ALTERNATE

Set (19, "*)

CLOSE DATABASES

dbd oseAl | ()

CLOSE | NDEXES

dbd ear | ndex()

COMMIT

cow T

dbConmi t Al I ()

COUNT

COUNT TO idVar [F(R IForCondition] [V\HI LE IWhiIeCondition] [

NEXT nNextRecord]; -
%[RECORD nRecorq [REST]

(A

dbeval ({|| idVvar: =idvar+1},

{| | IForCondition}, {| | IWhileCondition},

““nNextRecords nRecord IRest)

-

1239

DEFAULT

DEFAULT xVar TO xDefaultValue

or dCondSet ([cForCondition] , [bForCondition] . [bWhiIeCondition

]

‘—>[bEvaICOnditior], [nRecord%. RECNQ(), , , , IDescending)

DEFAULT(@xVar, xDefaultValue) = xVar

ordCreate(cindexName , cExpKey bExpKey IUnique)

DELETE
READ
DELETE
READ
dbDel et e()

ReadMbdal (Get Li st)

DELETE [FOR IForCondition] [V\HI LE IWhiIeCondition] [

NEXT nNextRecord$;-

H[RECORD nRecorq [REST] [ALL]

GetList := {}

READ SAVE

dbeval ({| | dbDel ete()},

{| | IForCondition},

“rnNextRecords nRecord IRest)

{| | \WhileCondition} ,

ReadMbdal (Get Li st)

DELETE FI LE xcFile RECALL
RECALL
ferase(cFile)
EJECT dbRecal | ()
EJECT

RECALL [FOR IForCondition] [W-II LE IWhiIeCondition] [

NEXT nNextRecord} P

qqout (chr(13))

H[RECORD nRecorc] [REST] [ALL]

ERASE

dbeval ({||dbRecal | ()}, {]|| IForCondition}, {|| IWhileCondition},

ERASE xcFile

“nNextRecords nRecord IRest)

REINDEX

ferase(cFile)

FIND

REI NDEX [EVAL |Eva|Condition] [EVERY nRecord§

FI ND xcSearchString

ordCondSet (, , , , [bEvaIConditior], [nRecord§

dbSeek(cSearchString)

ordLi st Rebui | d()

GO

RENAME

G{ Tq nRecord

RENAME xcOldFile TO xcNewFile

dbgot o(nRecord

eq: Tq BOTTOM

frenane(cOldFile, cNewfFile)

REPLACE

dbGoBot t on()

REPLACE idFieldl W TH expl [, idField2 W TH expz.] =
L’[FOR IForCondition] [\AHI LE IWhiIeConditiorEl [I\EXT nNextRecord}

Gc{Tq TOP

:[RECORD nRecorq [REST] [ALL]

dbeval ({|| idFieldl : = expl [idField2 : = expz.] b e

dbgot op() “{| | IForCondition}, {|| IWhileCondition}, nNextRecords .
“—~nRecord IRest)
INDEX ON
I INDEX ON expKey TO xclndexName [UNI QUE| [FOR IForCondition] REPLACE idFieldl W TH expl

‘—>[WH LE IWhiIeCondition] [[EVAL IEvaICondition] [EVERY nRecords

]] [ASCENUNq DESCENDINq

idFieldl : = expl

1240

1241

RESTORE

RESTORE SCREEN FROM cScreen

SET DECI MALS TO

restscreen(0, 0, Maxrow(), Maxcol (), cScreen)

Set(3, 0)

SAVE

SAVE SCREEN TO cScreen

SET DECI MALS TO nDecimals

cScreen: = savescreen(0, 0, maxrow(), maxcol ())

Set (3, nDecimals)

SEEK

SET DEFAULT TO

SEEK expSearch[SCFTSEEK]

Set(7, "")

dbSeek(expSearch[, ISoftSeeit)

SELECT

SET DEFAULT TO xcPathspec

SELECT onorkArea| idAlias

Set (7, cPathspec)

dbSel ect Ar ea(nWorkAreal cldAlias)

SET DELETED ON | OFF | xIToggle

SET

SET ALTERNATE TO xcFile [ADDI Tl VE]

Set(11, "ON' | " OFF" | [Toggle)

Set(19, cFile, | Additive)

SET DELI M TERS ON | OFF | xIToggle

SET ALTERNATE ON | OFF | xIToggle

Set(33, "ON' | " OFF" | IToggle)

Set(18, "ON' | " OFF" | IToggle)

SET DELI M TERS TO [DEFAULT]

SET BELL ON | OFF | xIToggle

Set(34, "::")

Set (26, "ON' | " OFF" | [Toggle)

SET DELI M TERS TO cDelimiters

SET O0.0?| COLOUR TO (cCol or String)

Set (34, cDelimiters)

Set Col or (cColorString)

SET DEVI CE TO SCREEN | PRI NTER

SET CONFI RM ON | OFF | xIToggle

Set (20, " SCREEN' | "PRINTER')

Set (27, "ON' | " OFF" | [Toggle)

SET EPOCH TO nYear

SET CONSOLE ON | OFF | xIToggle

Set(5, nYear)

Set (17, "ON' | " OFF" | [Toggle)

SET ESCAPE ON | OFF | xIToggle

SET CURSOR ON | OFF | xIToggle

Set (28, "ON' | " OFF" | [Toggle)

Set Cur sor (1| 0| iif(IToggle, 1, 0))

SET EXACT ON | OFF | x|Toggle

SET DATE FORMAT [Tc] cDateFormat

Set(1, "ON' | " OFF" | IToggle)

Set (4, cDateFormat)

SET EXCLUSI VE ON | OFF | xIToggle

1242

1243

Set(8, "ON' " OFF" IToggle)

Set(37, |Center)

SET FILTER TO

SET ORDER TO [nlndex]

dbclearfilter()

or dSet Focus(nindex)

SET FILTER TO ICondition

SET PATH TO

dbsetfilter(bCondition, cCondition)

Set(6, ")

SET FI XED ON | OFF | xIToggle

SET PATH TO [xcPathspec[, cPathspecl.]]

Set(2, "ON' | " OFF" | IToggle)

Set (6, cPathspec[, cPathspec:I..])

SET | NDEX TO [xclndex [xclndexl,.]]

SET PRI NTER ON | OFF | x| Toggl e

ordLi stC ear()
ordLi st Add(cIndex)
ordLi st Add(cIndex1)

Set (23, "ON' | " OFF" | | Toggl e)

SET PRI NTER TO

SET | NTENSI TY CNl OFF | xI Toggl e

Set(24, "')

Set (31, "ON' | " OFF" | | Toggl e)

SET PRI NTER TO [chevicq XcFile [ADDI Tl VE]]

SET KEY ninkeyCode [Tc]

Set (24, cDevic# cFile, 1 Additive)

Set Key(ninkeyCode NI L)

SET RELATION TO

SET KEY ninkeyCode TO [idProcedure]

dbcl earrel ation()

Set Key(ninkeyCode { |p, |, v| idProcedure(p,

v)})

SET MARG N TO

SET RELATI ON TO [expKeyl | NTO chlias]]
. [T9 expKey21 NTO xcAlias2.]
ADDI Tl VE]

Set(25, 0)

SET MARG N TO [nPageOffse}

if !lAdditive
dbd ear Rel ()
end
dbSet Rel ation(cAliasl, {|| expKeyl}, ["expKeyl|)
dbSet Rel ation(cAlias2, {|| expKey2}, [" epreyl'])

Set (25, nPageOffset)

SET SCOREBOARD ON | OFF | x| Toggl e

SET MESSAGE TO

Set(32, "ON' | " OFF" | | Toggl e)

Set(36, 0)

SET SOFTSEEK ON | OFF | x| Toggl e

Set(37, .F.)

Set(9, "ON' | " OFF" | | Toggl e)

SET MESSAGE TO [nRow [CENTER | CENTRE]]

SET TYPEAHEAD TO nKeyboardSise

Set(36, nRow)

1244

Set (14, nKeyboardSise)

1245

SET UNI QUE ON | OFF | x| Toggl e

Set(10, "ON' | " OFF" | | Toggl e)

SET\ARAPO\ll OFF| x| Toggl e

Set (35, "ON' | " OFF" | | Toggl e)

SKIP

SKI P [nRecord} [ALI AS idAIiasl nWorkArea]

[idAIiasl nWorkArea - >] (dbSki p([nRecord}))

STORE

STORE value TO variable

variable : = value

SUM

SUM nExpl [nExpz..] TO idvarl [idVar2..] [FOR IForCondition]

-
‘—>[VI LE IWhiIeCondition] [NEXT nNextRecord}; [REOCRD nRecorc]

[REST] [AL L]

dbeval ({]| idvarl: :idVar1+nExpl[, idvar2: :idVar2+nExp2.'] b, e
—{| | IForCondition}, {| | IWhileCondition}, nNextRecords nRecord IRest)

UNLOCK

UNLOCK

dbUnl ock()

UNLOCK ALL

dbUnl ockAl | ()

USE

USE

dbcl osearea()

USE [chatabas} -

;’[INDEX xclndexl[, xclndexz.] [ALIAS chIias] [EXO.USIVEI
SHARED

H[NEv] [READO\ILY] [VIA cDriver]]

dbUseAr ea([INewAree] , [cDriver] , cDatabase [cAIias] , [IShared
] [IReadonly)

[dbSet I ndex(cindexl)]

[dbSetIndex(cindex2)]

1246

nB command substitution functions

«
Inside nB there are many functions made only in substitutather
Clipper commands.

GET

@ nTop, nLeft GET Var
[PI CTURE cGetPictun}
[COLOR cCoIorStrinq
VHEN IPreExpressim]
VALI D IPostExpressio]i

Get (@GetList,
[nTop] , [nLeft] ,
{ |x] iif(pcount() >0, Var := x, Var) }
cGetPicturg , [cCoIorStrinq ,
[bPreExpressio} , [bVaIid])

is the get list array that will be increasfd

‘ aGetList with this get().

SAY

@ nTop, nLeft SAY exp
PI CTURE cSayPicture
[coLor ccolorstring

Say(nTop, nLeft, cVar, [cSayPicturi, [cCoIorStrinq)

APPEND FROM

APPEND FROM xcFile

Fl ELDS idFieId_Iist]
scop§

WHI LE ICondition]
FOR ICondition]
VIA chriver]

dbApp(cFileName, [acFieIds] ,
bForConditior] , [bwhileConditior] ,
nNextRecord]; ,

nRecor ,

IRes] ,

cDriver])

APPEND FROM xcFile

FI ELDS idFieId_Iist]
scop§

WH LE ICondition]
FOR ICondition]

DELI M TED xcDelimiter

dbDelinm(.f., cFileName [cDeIimiter], [acFiems],

bForConditior] , [bwhileConditior] ,
nNextRecord} , nRecorc], [IRes])

APPEND FROM XcFile
[FI ELDS idFieId_Iist]
scop§
[w+| LE ICondition]
[FOR ICondition]
SDF

dbSDF(.f., cFileName, [acFiems],
bForCondition] , bWhiIeConditior] ,
nNextRecord} , nRecorr], [IRes])

1247

CONTINUE

CONTI NUE

dbCont i nue()

COPY

COPY FI LE xcSourceFile TO xcTargetFile] xcDevice

CopyFi | e(cSourceFile cTargetFile| cDevice)

COPY STRUCTURE [FI ELDS idFieId_Iist]
TO xcDatabase

dbCopySt ruct (cDatabase [acFieIdz])

COPY STRUCTURE EXTENDED
TO xcExtendedDatabase

dbCopy XSt ruct (cExtendedDatabase)

COPY TO xcFile

Fl ELDS idFieId_Iist]
scop§

WHI LE ICondition]
FOR ICondition]
VIA chriver]

dbCopy(cFileName, [acFieId:} ,
bForConditior] , [bwhileConditior] ,
nNextRecord} ,

nRecor(] s

IRes] ,

cDriver])

COPY TO xcFile

Fl ELDS idFieId_Iist]
scop§

WHI LE [Condition]
FOR ICondition]

DELI M TED xcDelimiter

dbDelim(.t., cFileName [cDeIimiter], [acFiemq,
bForCondition] , bWhiIeConditior] ,
nNextRecord} , nRecor(], [IRes])

COPY TO xcFile
[FI ELDS idFieId_Iist]
[scop§
[wn LE ICondition]
[FOR ICondition]
SDF

dbSDF(.t., cFileName, [acFieIds],
bForCondition] , bWhiIeConditior] ,
nNextRecord} , nRecorq, [IRes])

1248

CREATE

CREATE xcDatabase
FROM xcExtendedDatabase
[&g
ALI AS cAliag]
VIA cDriver]

dbd dCreat e(cDatabase cExtendedDatabase

[cDriver] , [INE\A] , [cAIias])

JOIN

JO N WTH xcAlias TO xcDatabase
[FCR ICondition] [FI ELDS idFieId_Iist]

dbJoi n(cAlias, cDatabase
[acFieId% , [bForCondition])

KEYBOARD

KEYBOARD cString

Keyboar d([cString]) = NIL

LABEL FORM

LABEL FORM xcLabel
[TO PRI NTE@
[To FILE chiIe]
[NOOONSQ_E]
[scop§
[V\HI LE ICondition]
[FOR ICondition]

SANPLE]

dbLabel For n{ cLabel, [IToPrinter] , [cFiIe] ,

INoConsolq , [bForCondition] , [bWhileConditior] ,
nNextRecord};, [nRecorq , [IRes] s [ISamplq)

LIST
LI ST exp_list
TO PRI NTE@
TO FILE chiIe]
scop§

WH LE ICondition]
FOR ICondition]
CFF]

dbLi st ([IToDispIa)ﬂ , abListColumns

IAII] ,

bForConditior] , [bwhileConditior] ,
nNextRecord];, [nRecort] , [IRes] s
IToPrinter] , [cFiIeNamq)

LOCATE

LOCATE | scopg FOR ICondition
[W LE Icondition]

dbLocat e([bForConditior] , [bwhileConditior] ,
[nNextRecord]; , [nRecort] s [IRes])

PACK

PACK

1249

dbPack()

PUBLIC

PUBLI C idMemvar

MenPubl i c(cMemvarNam¢ acMemvarNames)

QuUIT

QT

Qi t()

RELEASE

RELEASE idMemvar

MenRel ease(cMemvarNam¢ acMemvarNames)

REPORT FORM

REPORT FORM xcReport

TO PRI NTEF§|

TO FILE chiIe]

NOOONSOLE]

scop§

WHI LE ICondition]

FOR ICondition]

PLAI N | HEADI NG cHeaqu
NOEJECT]| [SUMVARY]

RF(cForm,

bForConditior] , [bwhileConditior] ,
nNext] s [nRecor(] [IRes] [IPIain]
cheadin? [IBeforeEJec] [ISummar)]
IDate] , acExtra]) = NL

RESTORE FROM

RESTORE FROM xcMemFile [ADDI Tl VE]

MenRest ore(cMemFileName [IAdditivq)

RUN

RUN xcCommandLine

Run(cCommand)

SAVE TO

SAVE TO xcMemFile
[ALL [LI KE| EXCEPT skeletor]]

MenSave(cMemFileName [cSkeIetm], [u_ike])

SET FUNCTION

SET FUNCTI ON nFunctionKey TO cString

Set Functi on(nFunctionKey, cString)

1250

SORT

SORT TO xcDatabase
ON idField [/] Al
[. idField2 [/[
[scop§
[V\HI LE [Condition]
FOR ICondmon]

4191
a0d]

p—}

dbSort (cDatabase [acFieId
bForConditior] , bWhI|eCOndItIij
nNextRecord} , nRecort] [IRes])

TOTAL

TOTAL ON expKey
[FI ELDS idFieId_Iist] TO xcDatabase
[scop
WHI LE [Condition]
[FOR ICondmon]

dbTot al (cDatabase bKey, [acFieIds
bForCondition] , bWhlleCondmor]
nNextRecord} , nReccm]] [IRes])

UPDATE

UPDATE FROM xcAlias
oN eprey[RANDO\&
REPLACE idFieldl W TH exp
[, idField2 W TH exp]

dbUpdat e(cAlias, bKey; [IRandorr], [bRepIacemelflt)

Example:

dbUpdate("INVOICE', {|| LAST}, .T.,;
{I| FIELD->TOTAL1 := | NVO CE->SUML, ;
FI ELD->TOTAL2 : = | NVO CE->SUM2 })

ZAP

ZAP

dbZap()

RPT: the nB print function

«
The function RPT() helps to print ASCII file containing Memsar
Fields and print commands. RPT() is accessible from the DOC(
menu.

Memvars and fields
«

As usual with standard word processors, variables areanritelim-
ited with "<" (Alt+174) and ">" (Alt+175).

Inside these delimiters can find place character Memvarsactea
Fields and functions giving a character result.

The RPT() function generates a public variable n_Linesdbatains
the available lines inside the actual sheet. Every timeaifirwrit-
ten, this value is reduced, until a new page is reached andtthl
start again from the maximum value. It is useful to read thisable
to determinate if there is enough space or it is better toghpage.

Commands
«

The function RPT() recognise some print commands. These com
mands starts with the asterisk (*) symbol. This means thais"a
print command prefix.

It follows the command syntax.

1251

*COMMAND
+* COVWAND
cStatement

cStatement

*END

The lines contained inside *COMMAND - *END are executed
with the nB macro interpreter.

*DBSKIP

*DBSKI P [nSkip]

It Executes a dbskip() on the active alias.
*FOOT

*FOOT
cFooter
cFooter

*END

The lines contained inside *FOOT - *END are printed each time
at the bottom of pages.

*HEAD

* HEAD
cHeader
cHeader

+*END

The lines contained inside *HEAD - *END are printed each time
at the top of pages.

*IF

*| F ICondition

*END

If the conditionICondition is true, the lines contained inside *IF
- *END are printed.

*INSERT

*| NSERT cFileName

Includes the text contained into the fi&ileName
*LEFT

*LEFT nLeftBorder

The nLeftBorder is the number of column to be left blank as a
left border.

PP

+*LPP nLinesPerPage

It determinates the page length expressed in lines. Aftatipg
thenLinesPerPagéh line, a form feed is sent.

*NEED

*NEED nLinesNeeded

If the available lines are less theninesNeeded the follwing
text will be printed on the next page.

*PA

*PA

Jumps to a new page.
1252

*REM

*REM | * COMVENT [commentJin%

It adds a comment that will not be printed.
*WHILE

*WHI LE ICondition

+*END

The lines contained inside *WHILE - *END are printed as long
aslCondition is true.

Examples

«

It follows some example of text to be printed with the RPT{)du
tion. Example’s lines are numbered. Line numbers must npeoe
of areal RPT text files.

PAGE DEFINITION

Margins are defined with *HEAD, *FOOT and *LEFT com-
mands. In the following example is defined:

Top 2 lines;
Bottom 2 lines;
Left 10 characters.

The right margin is not defined as it depends on the lines lkengt
that will be printed.

The only considered page dimension is the height, *LPP gline
per page):

Page hei ght 66 |ines.

Here starts the example:

001 «Ipp 66

002 +head

003

004

005 +end

006 «foot

007

008

009 +end

010 =+left 10

011 ... text text text

012 ... test text text

At line 001 is defined the page height in lines. At line 002 is
defined the header; it contains two empty lines (003 and 004)
which will be printed at the top of every page. At line 006 &tar
the footer definition that contains two empty lines (007 a68é)0
that will be printed at the end of every page. At line 010 isrukedi

the space on the left that will be added to every line prinfedm

line 011 starts the normal text.

HEADER AND FOOTER

The commands *HEAD and *FOOT are used to define the top
and bottom border if they contains empty lines, it thesesliaee
not empty, they became real head and foot.

The dimensions are as it follows:

Top 6 lines (should be one inch);
Bot t om 6 lines;
Left 10 characters (should be an inch).

Page hei ght 66 lines (should be 11 inch).

At position 0.5 in (after 3 lines) a one line header appears.

1253

001 +lpp 66
002 ~head

003

004

005

006 ---------iiineoooen MYFILE TXT ---mmmmmo o e e
007

008

009 +end

010 +foot

011

012

013

014

015

016

017 +end

018 =+left 10

019 ... text text text

020 ... test text text

Af ‘Iine 006 (the fourth header line) a text appears. It will be
printed on every page at the absolute fourth page line.

CODE INSERTION

Pieces of code can be inserted inside *COMMAND - *END. It
can be useful to make complicated reports.

The following example declares a public variable used tolmem
pages.

001 +command

002 menpubl ic("PageNo")
003 PageNo := 0

004 +end

005 «lpp 66

006 +head

007 +command

008 PageNo : = PageNo +1
009 +end

010

011

012 +end

013 «foot

014

015 Page <PageNo>
016

017 +end

018 =«left 10

019 ... text text text
020 ... test text text

At line 001 starts a *COMMAND definition: lines 002 and 003
will be interpreted from the function EX(), the nB interpeet
These lines define a public variable and initialize it at 0.isTh
variable will be use to count pages.

At line 007, inside the header (nested), start another *COM-
MAND definition that contains an increment for the "PageNo"
variable. As the header is read and "executed" for every new
page, and that before the footer, the variable "PageNo"oceiit

tain the right page number.

At line 015, inside the footer, a reference to "PageNo" appea
Here will be printed the page number.

A more complicated example can be found ADDRESS. TXT’

the RPT text file used for the ADDRESS.& macro examples.

How can |...

«
nB is a little bit complicated as it
some examples.

may do many things. Here ar

Create a UDF function
UDF means User Defined Function. Inside nB there isn't the
possibility to create functions, but there is an alterraticode
blocks.

Create a big code block
A code block cannot be longer than 254 characters, as any othe
instruction inside nB.
So, there is no way to make a bigger code block, but a code block
can call another code block, and so on. For example:

mempublic({ "first", "second", "third" })
first := {|| eval(second, "hello") }
second := {|x| eval (third, x) }

third := {|x| alertbox(x) }

eval (first)

1254

This stupid example simply will show the alert box contagin
the word "hello".

The source files

«
The nB source is composed of four files:

‘NB. PRG The main source file containing essentially
the nB menu.._ .
‘REQUEST. PRG Contgms a link to all Clipper standajd
functhns.h . T
- STANDARD. PRG ;:(?:;amst e mostimportant standard fupc-
‘EXTRA. PRG Contains some exira function not abso-
) lutely necessary during macro execution.

The file ‘REQUEST. PRG source file generates some warnings be-
cause not all functions listed there are directly calledfoB. Don't
worry about that warning message.

Different *. R\’ (rmake) files are included to compile nB differ-
ently, including/excluding some program parts, for exartpl ob-
tain a runtime executor.

1 This is the original documentation of nanoBase 1997, with
minor modifications, that appeared originally ‘&t t p: / / wwaww.
geocities.conf SiliconValley/ 7737/ nb. htm.

1255

1256

