Copyright © Daniele Giacomini -- appunti2 @ gmail.com http://informaticalibera.net

«a2» 2013.11.11 ---

NnanoBase 1997 user manudl

DosxBase ... 2586
DBFfiles 2586
Index files i 2589
Relationsoo i i 2591

L@70) 301 0701) 150) 1 2593

HowtousenB 2598

Status line e 2599

Thedotline i, 2601

Themenusystemoiiiiiiiiiniinennnann. 2601
MenuFile 2602
MenuEdit 2611
MenuReport 2614
Menu HTF 2619
Menu Macroiiiii i e 2621
Menulnfo 2622
MenuDocC ... 2623

The text editor DOC()ot 2624

Thehelptextfile i, 2625

MacCIO ..o 2626
Macro statements i 2626
Variable declaration 2630

http://informaticalibera.net
http://informaticalibera.net
http://informaticalibera.net
http://informaticalibera.net

MaACIO StIUCLUTE . .o vttt e e e e e e e e e e e e et e e 2631

Macro COmMmENtScouiririen .. 2632
Macro long lines split 2633
The macrorecorder, 2633
Data (yPeS .« vttt e 2633
Characterciiii e 2634
MEMO ..ot 2636
Date ... e 2637
NUMETIIC ..o e e 2639
Logical 2640
NI 2641
ALY o e 2642
Codeblock ... 2646
(@) 0753 v 110) 2648
Delimitersooiii i e 2652
Codeblocks ... 2652
Standard functions i, 26353
AADD() .. 2653
ABS() 2654
ACLONE(Q) ..o e 2654
ACOPY () oo 2655
ADEL(Q) .o 2655
AEVALQ) ..o 2656
AFILLO) oo 2657

AINS() oo 2657

ALERT() .« oo 2658
ALTASO) oo e 2658
ALLTRIMO) « oot e 2659
ARRAY() oo e, 2659
ASCO et 2660
ASCANQ .« oo 2660
ASIZE() oo 2661
ASORTO) .« oo 2661
ATO) oo 2662
ATATLO) oo 2663
13) 100 (O 2663
13) 100 G I 2663
BIN2WO) © oo e e 2664
1:70) 20 NE T 2664
CDOWO) e 2664
CHRO ..o, 2665
CMONTHO .o e 2665
COLQ) et 2666
COLORSELECT() ... oo 2666
CTODO) ..o, 2666
CURDIR() ..o, 2667
DATE() e e 2667
DAY ..o 2667
DBAPPENDQ) ... 2668

DBCLEARFILTER(Q) . ..oooi 2668

DBCLEARINDEX() ..ot 2669
DBCLEARRELATION() ...\t 2669
DBCLOSEALL() © ..o e, 2669
DBCLOSEAREAQ) ...t 2670
DBCOMMIT() ..o e 2670
DBCOMMITALL() ..o 2670
DBCREATE() ..ot e e 2671
DBCREATEINDEX() ..ottt e 2671
DBDELETE() ..ot 2672
DBEVALQ .o 2672
DBFILTER() ..ot e 2674
DBGOBOTTOMO) .. eeee e e 2674
DBGOTO() .ot e 2674
DBGOTOP() ..o, 2675
DBRECALL() ..o 2675
DBREINDEXO ..ot 2675
DBRELATION() .« ..ot 2675
DBRLOCK() .. vttt 2676
DBRLOCKLIST() © ..o, 2676
DBRSELECT() ..ot 2676
DBRUNLOCK() .\ttt 2677
DBSEEK() .ot 2677
DBSELECTAREA() ..o 2678
DBSETDRIVER() ..., 2678

DBSETFILTER() ...t 2679

DBSETINDEX() ..o 2679
DBSETORDER() ..o oo 2680
DBSETRELATION() ... 2680
DBSKIPO) ..o e 2681
DBSTRUCTO) ..o e 2682
DBUNLOCK() .. oot 2682
DBUNLOCKALL() © ..o oe e, 2682
DBUSEAREA() .« ..ot 2683
DBDELETE() ..o e e 2684
DESCENDO) ..o 2685
DEVOUTO) .« .ot e 2685
DEVOUTPICTO) ..o 2685
DEVPOSO) ..ot 2686
DIRECTORY() ..o 2686
DISKSPACE() ... oo e e, 2687
DISPBOX() .o e 2688
DISPOUTO) oot 2689
1510). /0 IV 2689
DTOCO .o 2690
DTOSO .o 2690
EMPTY() © oo e e e 2690
BOF() © e e 2691
EVALQ oo 2691
EXP() oo 2692

FCLOSE(Q) ..o 2692

FCOUNTO oo, 2693
FCREATE() © ..o e 2693
FERASE() ..o 2694
FERROR() ...t e 2694
FIELDBLOCK() © .+ttt e, 2695
FIELDGET() ..o 2695
FIELDNAME(Q) ...\ttt 2696
FIELDPOS() .o e e 2696
FIELDPUTO) .« ..ot e 2697
FIELDWBLOCKQ) ..o 2697
13110 20 BT 2698
FLOCK() .o e 2698
FOPEN() .ot 2698
FOUNDO) .« ..ottt e 2699
FREAD() ... e 2699
FREADSTRO) ..o e 2700
FRENAME(...ttt 2701
FSEEK() © .ot 2701
FWRITE() ..o 2702
GETENVO) oo, 2703
HARDCR() ..o 2704
HEADER() ..ottt 2704
I2BINO oo 2704
110 N 2705

INDEXEXT() .« 2705

INDEXKEY() .o 2706
INDEXORD() . ..o e 2706
INKEY Q) © oot e 2707
INTO © vt 2713
ISALPHAQ) © .o e 2714
ISCOLORO) ..o e e, 2714
ISDIGITO) oo e e 2714
ISLOWER(Q) .« ..o e 2715
ISPRINTER() & ..ot e 2715
ISUPPER() ..ot e 2715
1920:) 1[0 NUU 2715
LASTKEY() © vt 2716
LASTREC() « .o e 2716
1912120 £ N 2717
1920 I 2717
LOGO) .+ e e 2717
150)45) 00 DT 2718
1510230 (0 2718
LUPDATE() .« ..o e e 2719
MAXO) oo 2719
MAXCOL() v oot 2719
MAXROWO) .ot 2720
MEMOEDIT() ..ot 2720
MEMOLINE() ...ttt 2723

MEMOREAD()o 2724

MEMORYQ) ..o, 2724
MEMOTRANQ) © . oo e 2725
MEMOWRITO) ..o 2725
MEMVARBLOCK() ...t 2726
MINO oo 2726
MLCOUNTO) ..ot e 2727
MLCTOPOS() .o oo, 2727
MLPOS() oo 2728
MONTHO .« .ot 2729
MPOSTOLC() v v oo oo, 2729
NETERRO . ..o 2730
NETNAMEQ ..o, 2730
NEXTKEY) © .ot 2731
NOSNOWO) oo e e 2731
ORDBAGEXT() ..o oo e 2731
ORDBAGNAME() ...\ oot 2732
ORDCREATE() ...t 2732
ORDDESTROY() + .. oeeeeeeeee e e 2733
ORDFOR() ..o 2733
ORDKEY() ..ot 2734
ORDLISTADD() ...t 2735
ORDLISTCLEAR() ... oot e 2735
ORDLISTREBUILD()@' oo 2736
ORDNAME() ... 2736

ORDSETFOCUS() . ..o oeeeeee e, 2737
OS0) + o 2737
OUTERRO) ..o e 2737
OUTSTD() .+ oo oo e 2738
PADY) oo 2738
PCOL() .o 2739
PROWO .« .ot 2740
QOUT() .+ 2740
RATO) oo e 2741
RDDLISTO) v e, 2741
RDDNAME() ..o 2742
RDDSETDEFAULT() .« ..o et 2742
READINSERT) . ..ottt 2742
READMODAL() ... 2743
READVARCQ .o 2743
RECNOQ) oo 2744
RECSIZE() .« . vt e 2744
REPLICATEQ ..ottt 2744
RESTSCREEN(Q) ... 2745
RIGHT() © .ot 2746
RLOCK() .o e e 2746
ROUND() « .o e e 2747
100) /0 I 2747
RTRIMO) ..o e e, 2747

SAVESCREEN() ... e 2748

SCROLL() ..o 2748
SECONDSO) ...t 2749
SELECTO) .+ v vttt 2750
SET() v oo 2750
SETBLINK() ...t e e 2751
SETCANCEL() ...\ oo, 2751
SETCOLOR() ..o e, 2752
SETCURSOR() . ..o, 2752
SETKEY() v 2752
SETMODE() ..o 2753
SETPOS() oo 2753
SETPRC() .. vveee e e 2754
SOUNDEXO .o et e 2754
SPACE() ..o 2755
SQRTO) ..o 2755
STRO) © oo et e e e 2755
STRTRAN() v 2756
STUFF() .o e e 2757
SUBSTRO) ..o e 2757
TIMEQ) ..o e 2758
110)N) /0 I 2758
TRANSFORMO) ..o e e 2759
TYPEQ oo 2759
UPDATED() . ..o e e 2760

UPPERQ) ... 2760

USED() ..o e 2761
VAL oo e 2761
VALTYPE() ... e 2761
YEAR() ..o 2762
nB functions 2763
ACCEPT() .o e 2763
ACHOICE() ..o i 2763
ACHOICEWINDOW() ... 2764
ALERTBOX() ..o i 2766
ATB() o 2766
BCOMPILE() ..o i 2768
BUTTONQ) .ot e e 2769
COLORARRAY() oo i 2769
COORDINATE(Q) ..o 2770
COPYFILE() ..o e 2770
DBAPP() ..o 2771
DBCLOSE() ..o e 2772
DBCONTINUE(Q) ..o i 2772
DBCOPY () oo 2772
DBCOPYSTRUCT() ..o 2774
DBCOPYXSTRUCT() ..oviii i 2774
DBDELIM() ... 2775
DBISTATUSQ) ..o e 2776
DBISTRUCTURE() ... 2776

DBJOINQ) oo e 2776

DBLABELFORMO)o 2777
DBLIST() ..ot e 2778
DBLOCATE() ..o e 2779
DBOLDCREATE() ... @'ttt 2780
DBPACK() ..ot e 2781
DBSDF() .o 2781
DBSORTO ..o e e 2782
DBTOTAL() .« ..ot e 2783
DBUPDATE() ...t 2784
DBZAP() ..o 2785
DISPBOXCOLOR() .. vv oo e 2785
DISPBOXSHADOW() ..., 2785
1) 1200 T 2786
DOCO) e 2787
DOTLINE() ..ot 2787
DTEMONTHO ..o 2787
DTEWEEK() ..ot 2788
EXO) oot 2788
GETO) v 2789
GVADDO) ..o 2790
GVDEFAULT() ..o e oot e e, 2790
GVFILEDIR() ..ot e e e 2791
GVFILEEXISTO ..o 2791
GVFILEEXTENTION() ..o 2792

GVSUBST() . eeiie e 2792

HTEO @ oo 2792
ISFILEQ) oo e 2793
ISWILDO) oo oo 2793
ISMEMVARQ .o 2794
ISCONSOLEON() .« .., 2794
ISPRINTERON() ..o e 2794
KEYBOARD() ...t 2795
LISTWINDOW() ..o e 2795
MEMOWINDOW() ... eeeeee e 2795
MEMPUBLICO) ..ot 2796
MEMRELEASE() ..ot 2797
MEMRESTORE() ...\t 2797
MEMSAVE() © .o e 2797
MENUPROMPT() ..o 2798
MENUTOO) ..o e, 2799
MESSAGELINE() ... e e 2799
MOUSESCRSAVE() ...\ ottt 2799
MOUSESCRRESTORE() . ..o 2800
PICCHRMAX() oo e 2800
QUITO .o, 2800
READ(Q) © . oot e 2801
REQ) © e 2801
12034 VO 2803
RPTMANYO) ..o e 2803

RPTTRANSLATE(Q) «.oiee e 2803

RUNOQ oo e 2803
SAY() oo 2804
SETCOLORSTANDARDO)o 2804
SETFUNCTIONOQ) ..ot 2805
SETMOUSE() ..o e 2806
SETOUTPUTO) ..o 2806
SETRPTEJECTO) ..o 2807
SETRPTLINES() .« ..ot 2808
SETVERBO) ..ottt 2808
SETVERB("EXACT") (obsolete)ovvvnenn... 2810
SETVERB("FIXED") ...\, 2811
SETVERB("DECIMALS") ...\ 2811
SETVERB("DATEFORMAT") ...\ \eeeeeeeennnn, 2811
SETVERB("EPOCH") 2812
SETVERB("PATH") ...\ 2812
SETVERB("DEFAULT") ... @'t 2813
SETVERB("EXCLUSIVE") ... \vvoeeeeiiiee 2813
SETVERB("SOFTSEEK") ... @@, 2813
SETVERB("UNIQUE") (obsolete) 2814
SETVERB("DELETED") ...\, 2814
SETVERB("CANCEL") ...ttt 2814
SETVERB("TYPEAHEAD")oeeeiiiiin.., 2815
SETVERB("COLOR") ...\, 2815
SETVERB("CURSOR") ... 2817

SETVERB("CONSOLE") i 2817

SETVERB("ALTERNATE")0voeeeeeeni, 2817
SETVERB("ALTFILE") ...t 2817
SETVERB('DEVICE")@oootee i, 2818
SETVERB('EXTRA") ..\t 2818
SETVERB("EXTRAFILE")coviiiiiieeenni.. 2818
SETVERB('PRINTER")oooveeeeeen, 2819
SETVERB("PRINTFILE")0oveiieieeeennns, 2819
SETVERB('MARGIN") ...\t 2819
SETVERB("BELL") ...ttt 2820
SETVERB("CONFIRM")o\, 2820
SETVERB("ESCAPE")ot 2820
SETVERB('INSERT") ...\, 2821
SETVERB(EXIT") ..ot 2821
SETVERB("INTENSITY") ..\, 2821
SETVERB("SCOREBOARD")\, 2822
SETVERB("DELIMITERS")@'ooiieeennnnn., 2822
SETVERB("DELIMCHARS")\eeeiin... 2822
SETVERB("WRAP") ...t 2823
SETVERB("MESSAGE")\vvoeeiee 2823
SETVERB("MCENTER")o\, 2823
STRADDEXTENTION() © . vveee e e 2824
STRCUTEXTENTION() ... oveeeeiee e 2824
STRDRIVE() ..o e 2824
STREXTENTION() ...\ ooe e 2825

STRFEILE() ... ey 2825

STRFILEFIND() ... 2825
STRGETLENQ) ... e 2826
STRLISTASARRAY() ..o 2826
STROCCURS() ..o e 2826
STRPARENT() ... e 2827
STRPATH() ... e 2827
STRTEMPPATH() ... 2827
STRXTOSTRING() ... 2828
TB() oo 2828
TEXT() oo 2830
TGLINSERT() ... e 2830
TIMEX2N(Q) .ot e 2831
TIMEN2HQ) ... e 2831
TIMEN2M(Q) ..o e 2831
TIMEN2S() ..o e 2832
TRUESETKEY() ... i 2832
WAITFILEEVAL(Q), 2833
WAITFOR() ... o i 2833
WAITPROGRESS() ... 2833
Normal command substitution 2834
nB command substitution functions 2856
RPT: the nB print function 2867
Memvarsand fields 2867

Commandsouiii 2868

Examples 2871
Howcanl... 2875
The source files 2875
Dos XBase ... 2586
(@10) 3010 701) 1510 1 2593
HowtousenB i 2598
Status line i e 2599
Thedotline i 2601
The menu system i, 2601
The text editor DOC() ... 2624
The helptextfile 2625
MacCro ... 2626
Data tyPeS ..ottt e 2633
OPeratorsttt e i e 2648
Dellmitersot i i 2652
Code blockS ... 2652
Standard functions 2653
nB functions 2763
Normal command substitution 2834

nB command substitution functions 2856

RPT: the nB print function 2867
How can l... 2875
The source files i 2875
nB' (‘‘nano Base’’: ‘‘n’’ = “‘nano’’ = 10**(-9) = “‘very little’’) is a

little Dos xBase written in Clipper 5.2 that can help to access ‘. DBF’
file created with different standards.

nB is:

e a dot command interpreter,
* a menu driven xBase,

 a xBase program interpreter.

Dos xBase

This section is a brief description of the functionality of a typical
Dos xBase.

The first purpose of a xBase program is to handle data inside a
*.DBF’ file. These files may be indexed with the help of index files
and more ‘.DBF’ files may be linked with a relation to obtain some-
thing like a relational database.

.DBF files

*.DBE” files are files organised in a table structure:

2586

| fieldl | field2 | field3 | recordl

| record?2

| record3

| recordb5

|
|
|
|
| \ record4
|
|
|
|

| recordb6

The lines of this table are records and the columns are fields.
Records are numbered starting from the first that 1s number 1.

Columns are defined as fields and fields are distinguished by name
and these names are saved inside the ‘. DBF’ file.

Every field (column) can contain only one specified kind of data with
a specified dimension:

 ‘C’, character, originally the maximum dimension was 254 char-
acters, minimum is 1;

e ‘N’, numeric, a numeric field that can contain also sign and deci-
mal values;

e ‘D’, date, a field dedicated to date information;

e ‘L’, logic, a filed that may contain only ‘T’ for True or ‘F’ for
False used as a boolean variable;

e ‘M’, memo, a character field with no predefined dimension, not
allocated directly inside the ‘.DBF’, but inside a ‘.DBT’ file, au-
tomatically linked.

No other field type is available for a typical xBase ‘.DBF’ file.

2587

To access the data contained inside a ‘. DBF’ file the following list of
action may be followed:

* Open a ‘.DBEF’ file inside the current area, where these areas are
something like file handlers.

e After the ‘.DBF’ file 1s opened, it referenced only by the alias
name that usually correspond to the original filename without ex-
tention.

* Move the record pointer to the desired location.
e [L.ock the current record to avoid access from other users.

* Do some editing with the data contained inside the current record
using the field names like they were variables.

* Release the lock.
e Move the record pointer to another desired location.
e [.ock the current record to avoid access from other users.

* Close the alias.
Before you go further, you have to understand that:
* A “*.DBF’ file 1s opened using a free WORK AREA that may be

associated to the concept of the file handler.

e The ‘.DBF”’ file is opened with a alias name that permit to open
the same ‘. DBF’ file more times when using different alias names.

e After the .DBF’ file is opened, we don’t speak any more of file,
but alias.

2588

e If the work area "n" is used from the alias "myAlias", speaking

of work area "n" or of alias "myAlias" is the same thing.

Index files

*.DBE” files are organised with record number, that is, you can reach
a specific record and not a specific information unless that you scan
record by record.

To obtain to "see" a ‘.DBF’ file somehow logically ordered (when
physically it is not), index files are used.

A index file, also called INDEX BAG, is a file that contains one or
more indexes

Indexes are rules by which a ‘. DBF’ file may be seen ordered.
A typical index file may contain only one index.

A index file may have the following extention:

e ‘. NDX’, single index, dBase III and dBase III plus;
e *.NTX’, single index, Clipper;
e ‘. MBX’, multiple index, dBase 1V;

e ‘. CDX’, multiple index, FoxPro.

Every index file may be used only in association with the ‘.DBF’
for what it was made. The problem is that normally there is no
way to avoid errors when the user try to associate the right ‘. DBF’
file with the wrong index.

2589

To access the data contained inside a ‘. DBF” file the following list of
action may be followed:
e Open a ‘. DBF’ file.
* Open a index file.
e Select a particular order.
e Search for a key or move the record pointer on a different way.
 Lock the current record to avoid access from other users.

* Do some editing with the data contained inside the current record
using the field names like they were variables.

 Release the lock.
e Move the record pointer to another desired location.

e [Lock the current record to avoid access from other users.

* Close the alias.
Before you go further, you have to understand that:

 As orders are contained inside a INDEX BAG file physically dis-
tinguished form the °.DBF’ file, it may happen that a *.DBF’ file
i1s wrongly opened and edited without the index. In this case,
the INDEX BAG i1s not updated and when the INDEX BAG will
be opened, the records contained inside the ‘.DBF’ file may not
correspond.

 For the same reason, an improper program termination may result
in an incomplete data update. Thatis: . DBF’ file may be all right,
INDEX BAG not.

2590

* This 1s why xBase programs are "weak" relational databases or
they are not relational databases at all.

* When troubles occurs, indexes must be rebuild.

Relations

Many °.DBEF’ files with indexes may be opened simultaneously. Data
contained inside more ‘.DBF’ files may be somehow connected to-
gether. See the example.

| Date |
| = |~ | |
| XXXX | XXXXXXX | XXXXXXXX | 01 | ——————— >
| === |~ |~ | = | |
I vyyyy | yyyyyyy | yyyyyyyy | 02 | |
| |~ |~ | | |
| zzzz | zzzzzzz | 22222227 | 01 | ——————— > |
N _ 4 |
[...] |
|
K ——_—————— ’
|
|
| i
| | Employee # | Name | Address |..... |
| | = |~ |~ | ===~ |
Y —— > | 01 | aaaaaaa | aaaaaaa |..... |
| |~ |~ |~ |
| 02 | bbbbbbb | bbbbbbb |..... |
|
|

The first . DBF’ file contains some data that refers to an Employee
number that may appear repeated on more records.

Employee informations are stored inside another ‘.DBF’ file that
contains only one record for every employee.

Establishing a relation from the first ‘. DBF’ file to the second, mov-
ing the record pointer of the first “. DBF’ file, that is the first alias, the

2591

record pointer of the second, the child alias, is moved automatically
to the record containing the right data.

The relation 1s an expression that should result in a number if the
child alias 1s opened without index, or in a valid index key if the
child alias 1s opened with an index.

[4

To relate two
lowed:

.DBFE” files the following list of action may be fol-

e Open the first ‘. DBF” file.

e Open a index file for the first alias.

e Select a particular order.

e Open the second ‘.DBF’ file.

* Open a index file for the second alias.
* Select a particular order.

e Select the first alias.

e Define a relation form the first alias and the second alias: the
child alias.

e Search for a key or move the record pointer of the first alias (don’t
care about the Child alias).

e [Lock the current record to avoid access from other users.

e If data contained inside the Child alias should be edited (usually
it doesn’t happen), lock the current record of the Child alias.

* Do some editing with the data contained inside the current record
using the field names like they were variables.

» Release the lock (also with the Child alias if a lock was made).
2592

* Move the record pointer to another desired location.

* [Lock the current record to avoid access from other users.

e [...]
e Release the relation.
* Close the Child alias.

* Close the first alias.

As may be seen, relations are not saved inside files, but are obtained

with lines of code.

Composition
nB is composed from the following files, where xx 1s the the version
code.
NBASExx1.ZIP EXEs for small PCs
NBASExx2.ZIP Runtime EXEs for small PCs
NBASExx3.ZIP EXEs for 1286 with 2M+
NBASExx4.ZIP DOCs
NBASExx5.ZIP EXAMPLESs
NBASExx6.Z1P SRCs for version 96.06.16
NBASExx7.ZIP SRCs for the current version

Every archive file contains:

‘COPYING.TXT’

GNU General Public License version 2 in
Dos text format.

‘README . TXT’

the readme file.

‘FILE_ID.DIZ’

definition.

The file ‘NBASExx1.ZIP’ contains also the following files.

2593

. , the executable program for DBFNTX and
NE LBk DBFNDX files, linked with RTLINK.
‘NB.HLP’ this manual in "Help Text File" format.

The file NBASExx2.ZIP contains also the following files.

‘NB.EXE’

the run-time to execute macro programs for
DBFNTX and DBFNDX files handling,
linked with RTLINK.

The file ‘NBASExx3.ZIP’ contains also the following files.

the executable program for DBFCDX,
‘NB.EXE’ DBFMDX, DBFNDX and DBFNTX files,
linked with EXOSPACE.
‘NB.HLP’ the user manual in "Help Text File" format.

The file ‘NBASExx4 .2zIP’ contains also the following files.

‘NB.PRN’ the user manual in printed text format.
‘NB.RTEF’ the user manual in RTF format.
‘NB.TXT’ the user manual in ASCII text format.
‘NB.HTM’ the user manual in HTML format.

The file ‘NBASExx5.zIP’ contains also the following files.

‘ ADDRESS.DBF’ an example database file.
‘ ADDRESS.NTX’ index file associated to °*_ADDRESS.DBF’.
. , a label form file used to print data con-
_ADDRESS.LBL : .

tained inside ‘_ ADDRESS .DBF’ .
. , a report form file used to print data con-
_ADDRESS.FRM : .)

tained inside ‘_ ADDRESS.DBF’ .
. , a RPT text file used to print data contained
_ADDRESS.RPT ..

inside °_ADDRESS.DBF’ .

2594

‘_ MAINMNU.

&

a macro program source example of a
menu that executes some others macro pro-
grams. This example is made to demon-
strate how nB can execute directly a source
code without compiling it. This example is
made only to taste it: it is very slow and
only a speedy machine can give the idea of
it.

‘OMAINMNU.

&

a macro program source example of a
menu that executes some others macro pro-
grams. It is the same as *_MAINMNU. &’ but
it is made to start the execution of the com-
piled macros.

‘OMAINMNU.

NB’

compiled macro program ‘OMAINMNU. &’

‘OMAINMNU.

BAT’

a batch file to show how to run the execu-
tion of ‘OMAINMNU.NBR’

‘1ADDRESS.

a macro program source example for han-
dling a *.DBF’ file containing addresses in
various ways.

‘1ADDRESS.

compiled macro ‘1ADDRESS. &’ .

‘2ADDRESS.

a macro program source example for han-
dling a *.DBF’ file containing addresses in

various ways: a little bit more complicated
than 1 ADDRESS.&.

‘2ADDRESS.

compiled macro ‘2ADDRESS. &’ .

‘3ADDRESS.

a macro program source example for han-
dling a *.DBF’ file containing addresses in
various ways: a little bit more complicated
than ‘2ADDRESS.&’ .

‘3ADDRESS

.NB’

compiled macro ‘3ADDRESS. &’.

2595

a macro program source example for han-
dling a *.DBF”’ file containing addresses in

‘4ADDRESS. & : : . :
various ways: a little bit more complicated
than ‘3ADDRESS. &’ .
‘4ADDRESS.NB’ compiled macro ‘4ADDRESS. &’ .
a macro program source example for cal-
‘ABIORITM. &’ . .
culating the personal bio wave.
‘ABIORITM.NB’ compiled macro ‘ABIORITM. &’ .
‘ , a ‘.DBF’ file used inside the BSTUDENT
_STUDENT.DBF
macro example.
‘_STUDENT.NTX’ index file used for °*_STUDENT.DBF’ .
. , a ‘.DBF’ file used inside the BSTUDENT
_STUDSTD.DBF
macro example.
. , a RPT text file used to print data contained
_STUDENT.RPT .. ,
inside ‘°_ STUDENT .DBF’ .
. , a RPT text file used to print data contained
_STUDSTD.RPT .. ,
inside °_STUDSTD.DBF”’ .
a macro program source example for stu-
dents evaluation: a description about stu-
‘BSTUDENT. &’ : : .
dents is obtained linking other standard de-
scriptions.
‘BSTUDENT .NB’ compiled macro ‘BSTUDENT. &’ .
a macro program source example to gen-
‘CBATMAKE. &’ erate a batch file to be used to back up an
entire hard disk.
‘CBATMAKE .NB’ compiled macro ‘CBATMAKE. &’ .
. , a macro program source example to start
BROWSE . & .
an automatic browse.
‘BROWSE .NB’ compiled macro ‘BROWSE. &’ .

‘BROWSE .BAT’

batch file to start a ‘. DBF’ browse with the
BROWSE macro program.

‘MENU. &’

a macro program source example for a Dos
menu.

2596

‘MENU.NB’

compiled macro ‘MENU. &’ .

‘MENU.BAT’

batch file to use the MENU macro.

The file ‘NBASExx6.7IP’ contains also the following files: source
code for the version 96.06.16.

‘NB.PRG’

the main source file for version 96.06.16.

‘NB_REQ.PRG’

the source file containing links to all the
standard functions.

‘NB.LNK’

link file for compilation.

‘NB_NRMAL.RMK’

rmake file to compile with RTLink.

‘NB_EXOSP .RMK’

rmake file to compile with Exospace.

‘NB_RUNTI.RMK’

rmake file to compile with RTLink defining
RUNTIME to obtain a small nB runtime
version.

‘MACRO.LNK’

link file to compile and link a macro.

‘MACRO.RMK’

rmake file to compile and link a macro.

The file ‘NBASExx7 .ZIP’

contains also the following files: source

code for the current version.

‘NB.PRG’

the main source file.

‘REQUEST.PRG’

the source file containing links to all the
Clipper functions.

‘STANDARD.PRG’

the source file for standard functions.

‘EXTRA.PRG’

the source file for other standard functions.

‘STANDARD.CH’

general include file that substitutes all in-
clude file normally used for normal Clipper
compilations.

‘NB.CH’

include file specific for nB.

‘NB.LNK’

link file for compilation.

‘NB_RUNTI.LNK’

link file for runtime compilation.

‘NB_NRMAL.RMK’

rmake file to compile with RTLink.

2597

‘NB_EXOSP .RMK’

rmake file to compile with Exospace.

‘NB_RUNTI.RMK’

rmake file to compile with RTLink defining
RUNTIME to obtain a small nB runtime
version.

‘MACRO.CH’ include file to compile and link a macro.
‘MACRO.LNK’ link file to compile and link a macro.
‘MACRO . RMK’ rmake file to compile and link a macro.

‘CLIPMOUSE.ZIP’

a simple free library for mouse support un-
der Clipper (c¢) 1992 Martin Brousseau.

How 1to use nB

nB normal syntax is:

nB [nB_parameters |

[macro_filename | | macro_parameters |

To run nB, just type the word "NB" and press [Enter | to execute. It
will run in command mode, this means that it will look like an old

xBASE command prompt.

To run the program as a macro interpreter, type the word NB fol-
lowed from the macro file name with extention (no default extention
i1s supposed). If parameters are given, after the macro file name,
these will be available inside the public variables: ¢_Parl, c_Par2,
..., ¢_Par9. c¢_Par0O will contain the macro file name (see the macro
file BROWSE.&). nB will terminate execution when the macro ter-

minates.

These parameters are available for nB:

-C

Suppress the copyright notice. It is usefull
when using nB for macro interpretation.

2598

Suppress the "Wait-Wheel" if not desired.
W It is the "Wheel" that appears at top-left
when a macro is interpreted or other long
elaborations are executed.
-2 Shows a short help.

nB macro "compilation" syntax is:

nB —m source_macro_filename [destination_macro_ﬁlename]

With the -m parameter, nB "compiles" the ASCII
source_macro_filename into destination_macro_filename.

Status line

nB shows a "status line" at the top of the screen when the nB com-
mand prompt or the menu system is active. It shows some important
informations.

| |DBFNTX | I«| 1|ADDRESS 1/ 4 | ADDRESS.NTX |
| | | | |
| |

| Last record (7).

|
| |

| |

| |

| | Record pointer position (6).
| |

| Active alias (5).

|

Current Work Area (4)

|
[\
[|
[|
[\
[|
[\
[\
[\
[\
| | Deleted record appearance (3)
[
| Actual default database driver (2).
|
M

acro recorder indicator (1).

2599

1/ 4 |ADDRESS.NTX | 1|ADDRESS
| | |

| |
| Order Tag Name (10)

|
Order number (9)

|
|
|
|
|
Order Bag name (8)

(1) This 1s the place for the macro recorder indicator. The symbol
used 1s "&". Blank means that the macro recorder 1s OFF; & blinking
means that the macro recorder 1s ON; & fixed means that the macro
recorder 1s PAUSED.

(2) The name of the default database driver. It is not necessarily the
database driver for the active alias; it is only the database driver that
will be used for the next open/create operation.

(3) An asterisk (*) at this position indicates that SET DELETED
1s OFFE. This means that deleted records are not filtered. When a

BLANK 1is in this place, SET DELETED i1s ON, so that deleted
records are filtered.

(4) The active work area number, that is, the area of the active alias.

(5) The active alias name. Note that the alias name 1s not necessarily
equal to the ‘. DBF’ file name.

(6) The actual record pointer position for the active alias.
(7) The number of records contained inside the active alias.
(8) The Order Bag name; that is the index file name.

(9) The order number.

(10) The order tag (name). When DBFNTX database driver is used,
it correspond to the Order Bag name.

2600

The dot line

Starting nB without parameters, the dot line appears. This is the
place where commands in form of functions may be written and ex-
ecuted like a old xBase.

The functions written inside the command line that don’t result in
an error, are saved inside a history list. This history list may be
recalled with [F2] and then the selected history line may be reused
(eventually edited). Key [up]/[down] may be used to scroll inside
the history list without showing the all list with [F2].

[Enter] 1s used to tell nB to execute the written function.

As the dot line 1s not an easy way to use such a program, a menu
is available pressing [FI0] or [Alt M]. The [FI10] key starts the
ASSIST() menu. This menu may be started also entering the name
of the function: "ASSIST()".

nB includes a simple built-in text editor: DOC(). It may be started
from the dot line entering "DOT()". No special key is dedicated to
start this function.

The menu system

The nB menu system appears differently depending on the place

where it is "called". When available, the menu system appears press-
ing [Alt M] or [FI0].

The Menu system 1s organised into horizontal menu, vertical menu,
and pop-up menu.

The horizontal menu contains selectable items organised horizon-
tally:

2601

‘ One Two Three Four Five

The cursor may be moved on a different position using arrow keys
[Left /[Right]; [Esc] terminates the menu; [Enter] opens a vertical
menu.

The vertical menu contains selectable items organised vertically:

One Two Three Four Five

|First |
| Second |

The cursor may be moved on a different position using arrow keys
[Upl/[Down]; the arrow keys [Left]/[Right] change the vertical
menu; [Esc] closes the vertical the menu; [Enter] starts the selected
menu function.

The vertical menu contains selectable items organised vertically:

One Two Three Four Five

|First |
| Second >|—mm e .
| Third |Sub function 1]

The cursor may be moved on a different position using arrow keys
[Up /[Down]; [Esc] closes the pop-up the menu; [Enter] starts the
selected menu function.

The following sections describe the menu system.
Menu File

The menu File contains important function on ‘.DBF’ file, indexes,
relations and Replaceable database drivers.

For database files are considered two aspects: the physical aspect,
2602

and the logical alias. When a ‘.DBF’ file is opened, it becomes a
alias.

Indexes are considered as index files and index orders.

It follows a brief menu function description.

Change directory
Changes the actual drive and directory.

File .DBF
Contains a pop-up menu for ‘. DBF’ operations.
New .DBF

A ‘.DBF’ file 1s a table where columns, called Fields, must
be specified and lines, called records, are added, edited and
deleted by the program.

Field characteristics are:

2603

NAME

the field name must be unique inside
the same file, it is composed of letters,
number and underscore (_), but it must
start with a letter and it is not case sen-
sitive.

TYPE

the field type determinates the type of
data it can hold.

LENGTH

is the field total length in characters; it
doesn’t matter of the type of data.

DECIMAL

is the length of positions after decimal
point. This information is used nor-
mally for numeric fields. In this case,
take note that the DECIMAL length,
together with the decimal point, will
subtract space for the integer part of the
number from the total LENGTH of the
filed.

Field Types:

2604

it is a text field long LENGTH charac-

ters.
it is a numeric field long LENGTH

characters with DECIMAL characters
for decimal positions. Note that if
LENGTH 1is 4 and DECIMAL is 0
(zero), the field may contain integers
N Numeric from -999 to 9999; but if LENGTH is
4 and DECIMAL 1, the field may con-
tain numbers from -9.9 to 99.9: two po-
sition for the integer part, one position
for the decimal point and one position

for decimal. . _
it is a date field: it contains only dates;

D Date the length should not be specified as it

is automatically 8.
itis a logical (boolean) field: it contains

only TRUE, represented by "Y" or "T",
L Logic or FALSE, represented by "N" or "F".
The length should not be specified as it

is automatically 1.
it 1s a character field with unknown di-

mension. It is recorded into a parallel
file with <. DBT’ extention. The original
M Memo *.DBF”’ file holds a space for a pointer
inside the ‘.DBT’ file. The length of a
Memo field is automatically 10 and is
referred to the memo pointer.

After the function "NEW .DBF" is selected, a table for the
field specifications appears.

C Character

2605

Database file structure |

Field Name Type Length Decimal |
____________________________ |

To navigate and to edit the table use the following keys:

move the cursor one position (up,
[Up V[Down /[Left 1L Righidwn, left or right);
[PgUp] move to previous screen page;
[PgDn|] move to next screen page;
[Ctrl PgUp | move to top of table;
[Ctrl PgDn] move to bottom of table;
[Ctrl Home] move to first column;
[Ctrl End] move to last column;
[Ctrl Enter | append a new empty line;
delete (cut) the current line and save a
[Cirl FI] copy into the "clipboard";
[Ctrl F21 copy current line into the table "clip-
board";
insert (paste) the content of the "clip-
[Ctrl F5] board" in the current position;
[Enter | start editing in the current position;
[Esc] terminate;
(x] any othe.r .key will be written in the cur-
rent position.

When the editing is terminated, press [Esc] and a dialog box
will ask for the file name and the RDD.

xBase files (.DBF) are not all equal, this way, when a new
*.DBF’ file si created, the RDD (Replaceable Database Driver)

2606

is asked. The normal RDD is DBFNTX, the one used by Clip-
per.

Modify .DBF structure

The modification of a ‘. DBF”’ file structure 1s a delicate matter
if 1t contains data.

In fact, 1t 1s a data transfer from a source ‘.DBF’ file to a des-
tination ‘.DBF’ file with a different structure. This way, the
destination ‘.DBF’ will be updated only for the fields with the
same name of the source one. The position may be different,
but names cannot be changed (not so easily).

Mistakes may be dangerous, so, before doing it, it is recom-
mended a backup copy of the original ‘. DBF” file.

Open .DBF

When a ‘.DBF’ file is opened, it becomes a alias, a logical
file, placed inside a work area. The same ‘.DBF’ file may be
opened inside different areas with different alias names.

The required information to open the file are:

2607

FILENAME the physical file name.
the alias name. If not assigned, it be-

ALIAS comes automatically the same of FILE-

NAME without extention.
the Replaceable Database Driver to use

to access to this file.
a logical value: TRUE means that the

SHARED file will be accessible to other users,

FALSE means use exclusive.
a logical value: TRUE means that the

file will be only readable and no modi-

RDD

READ ONLY fication will be allowed, FALSE means
that no restriction on editing will be
made.

File NTX
Contains a pop-up menu for physical indexes operations.
New .NTX / new tag

If the active area is used we have an active alias. In this case a
index may be created. The index is a way to see the active alias
ordered without changing the physical position of records.

There are two words to understand: ORDER and INDEX-
BAG. The index bag is the file that contains the information
on the record ordering, the order is the rule followed to order
the records. A index bag may contains one or more orders
depending on the Replaceable Database Driver in use.

Typical ‘. NTX’ file are index bag containing only one order.
Depending on the RDD in use the following field may be filled.

2608

INDEX FILENAME this 1s the name of the index bag.
the expression that defines the rule for
KEY EXPRESSION

the record ordering.
this is the name to give to the order

(tag) when the RDD permits to have a
ORDER NAME index bag containing more than one or-
der. In the other case, the index bag

name correspond to the order name.
a FOR condition to filter records before

indexing.

FOR EXPRESSION

Open index

If a index file already exists, it can be associated to the active
alias simply opening it.

Take note that the system is not able to verify if the index
belong the active alias and if it is not so a error will result.

is the name of the index bag file to
INDEX NAME
open.
Alias
Contains a pop-up menu for logical databases (alias) operations.
Select

Only one may be the active alias and with this function the
active alias may be changed choosing from the list of used
areas.

Selecting the area number zero, no alias is active.

Display structure
With this function the active alias structure may be viewed.

2609

Close active alias

Selecting this function the active alias 1s closed. That is: the
“.DBF’ file and eventual indexes are closed.

Close all aliases
With this function all Aliases are closed.

Order
Contains a pop-up menu for logical indexes (orders).

Order list rebuild

This function rebuild the indexes opened and associated to the
active alias.

Order set focus

This function permits to change the active order selecting form
the ones opened and associated to the active alias.

Order list clear
This function closes all orders associated to the active alias.

Relation
Contains a pop-up menu for relations (links with other Aliases).

Set relation

This function permits to establish a relation between a alias
and a Child alias showing as a result a unique database.

2610

1s the alias name to connect to the ac-

CHILD : .
tive alias.
is the relation expression that specify
the rule for the relation. The value of
this expression is the key to access the
Child alias: if this Child alias 1s ac-
EXPRESSION

cessed without index, it must be the
record number, if this Child alias 1s ac-
cessed via index, it must be a valid in-
dex key.

Clear relation
This function eliminates any relation that originate form the
active alias.
RDD default
Contains a pop-up menu for Replaceable Database Driver de-
faults.

Show actual RDD default
It simply shows the actual Replaceable Database Driver.

Set default RDD
Select a new default Replaceable Database Driver.

Menu Edit

The menu Edit contains functions to access data from the active alias
(the actual area).

View
This function permits you to view the active alias with eventual
relations as a table.

2611

No edit 1s allowed.
To navigate the table use the following keys.

[Enter] start field editing.

[PgUp] show previous screen page.

[PgDn] show next screen page.

[Ctrl PgUp] show top of alias.

[Ctrl PgDn | show bottom of file.

[Ctrl Home] show the first column.

[Ctrl End] show last column.
Edit/browse

This function permits you to edit the active alias with eventual
relations as a table.

To navigate and edit the table use the following keys.

[Enter] start field editing.
[PgUp] show previous screen page.
[PgDn | show next screen page.
[Ctrl PgUp | show top of alias.
[Ctrl PgDn] show bottom of file.
[Ctrl Home | show the first column.
[Ctrl End] show last column.
[Ctrl Enter | append a new empty record.
[Ctrl F2] copy the current record.
[Ctrl F3] append and paste a record.
aste a previously copied record, over-
[Cirl F4) gvriting tie contelilt of fhe current one.
[Cirl Y] delete or recall the current record.
[Ctrl Del] delete or recall the current record.

When a memo field 1s edited:

2612

[Esc] cancel and close the memo window.

[Ctrl Y] line delete.

[Ctrl W] save and close the memo window.
Replace

The content of a Field of the active alias may be replaced with an
expression.

The required data is:

FIELD TO REPLACE the Field name to be replaced.
NEW VALUE EXPRES- | the expression that obtain the new value

SION for the selected Field.
the WHILE condition expression: the re-

placement continue until this expression

WHILE EXPRESSION results True. The constant ‘. T.’ is ever
True and is the default.
the FOR condition expression: the re-
placement i1s made for all records that
FOR EXPRESSION satisfy the condition. The constant . T.’
is ever True and is the default.
Recall

The records signed for deletion (deleted but still there), may be
recalled (undeleted).

The required data is:
the WHILE condition expression: the
WHILE EXPRESSION r§cord recall continue until this expres-
sion results True. The constant . T.’ 1s
ever True and is the default.
the FOR condition expression: the
record recall 1s made for all records that
FOR EXPRESSION satisfy the condition. The constant . T.’
1s ever True and is the default.

2613

Delete

Deletes (sign for deletion) a group of record depending on the
required conditions.

The required data is:
the WHILE condition expression: the
WHILE EXPRESSION recorFl deletion continue until this ex-
pression results True. The constant *. T .’
1s ever True and is the default.
the FOR condition expression: the
record deletion 1s made for all records
FOR EXPRESSION that satisfy the condition. The constant
‘.7T.’ 1s ever True and is the default.
Pack

This function eliminates definitely records previously deleted
(signed for deletion).

It may work only if the active alias was opened in exclusive mode.

Menu Report

The menu Report contains functions for data report (print). In par-
ticular, label files ‘. LBL’ and report file ‘*.RPT’ may be created and
used for printing. There is also another way to print, with the RPT()
system that is available inside the nB internal editor DOC().

DBGOTOP()
Moves the record pointer for the active alias at the first logical
record.

New label

With this function can be created a standard label file ((LBL under
the dBaselll standard).

2614

Labels may be printed in more than one column and can contain
16 lines maximum.

The label data is the following.

REMARK a label remark that will not be printed.

HEIGHT the label vertical dimension.

WIDTH the label horizontal dimension.

MARGIN the left margin in characters.

LINES the vertical spacing between labels.

SPACES the horizontal spacing between labels in
characters.

ACROSS the number of label columns.

LINE 1 The first line inside labels.

LINE n The n-th line inside labels.

LINE 16 The 16th line inside labels.

The number of lines inside the labels depend on the HEIGHT and
the maximum value is 16.

The label lines can contain constant string and/or string expres-
sions.

See the example below.

2615

Margin

<——>
XXXKXKXKX | XXXXKKXKXX):0:9.9.9:9.9:9.9:9.9.9:0:9:9.0:4):9:9.9,9.0.9.0.9:9.9.0.0.:0.0.0¢
):0:9:9.9:9:0.4D:9:9:9:0.9:0.0:¢):0:9:9.9:9.9:9.9:9.9.9.9:9:9.0:4¢):9:9.9,9.0:9.0.9:9.9.9.0.:0.0.0.¢
XXXX Height XXXX <-—— Width ———>):9:9:9,9.0.9.9.9:9.9.:9.0.0.0.0.¢
),0.9:0:9.9.:0.41D:9.9.0.0.9:9.9:¢ XX XX XXX KXKXXXXKXXXX AXKXKXXXXKXXXXKXXXXX
),0.0:0:9.9.0.41D:9.9.0.0:0.0.9:¢ KX XX XXX KXKXXXKXKXXXX AXKXKXXXXKXXXXKXXXXX
|
| Lines
| Spaces
XX Line 1 XXXXXX XX XX XXX XKXXXXKXXXX AX XX XXXKXXXXXXXXX
XX Line 2 XXXXXX XX XX XXX XKXXXKXKXXXX AXKXKXXXXKXXXXKXXXXX
XX Line 3 XXXXXX):0:9:9.9:0.9:9:0:9.0:9.0.9:0:04).9:9:0.9.0.9.0.9:9.0.0.0.0.0.0.¢
XX Line 4 XXXXXX):0:9:9.9.0.9:9:0:9:0.9.0.9:0:0¢).0:9:0.9.0.0.0.9:9.0.0.0.0.0.0¢
XX Line 5 XXXXXX):9:9:9.9:9.9:9.9:9.9.9:0:9:9.0:4¢):9:9.9,9.0.9.0.9:9.9.0.0.9.0.0.¢
XXX XKXXXKXKXKXXKXKXKXKXX):9:9.9:9.9:9:0.9.9.9,9.0.9.9.0.¢ AAXKXKXAXKXXKXKXKXKXKXKXXXX
):0:9:9.9:9.9.9.0:9:9.9:0.9:0.0:¢):0:9.9.9:9.9:9.9:9.9.9:0.9:9.0:4¢):9:9:9,9.0.9.:9.9:9.9.9.0.:0.0.0.¢
):0:9:9.9:9.9.9.0:9:9.9:0.9.0.0:¢):0:9:9.9:9.9:9.9:9.0.9.0:9:0.0:4¢):9:9:9,9.0.9.0.9:9.9.0.0.:0.0.0.¢
):0:9:9.9:9.9.9.0:9:9.9:0.9:0.0:¢):0:9:9.9:9.9:9.9:9.0.9.9:9:0:0:4¢):9:9:9,9.0.9.9.9:9.9.:0.0.0.0.0.¢
):0:9:9.9:9.9:9.0:9.9.9:0.0:0.0:4):0:9:9.9:9.9:9.0:9.0:9.9.9:0:0:4¢):9:9:0.9.0.9.0.9:9.9.9.0.0.0.0.¢
\ | |
\ | |
\ | |
te—m ACross ——————————————— +

Modify label

This function permits you to modify a label file.

Label form

This function permits you to print labels with the data provided
by the active alias: one label each record.

The following data is required.

LABEL FILENAME the label filename.
the WHILE condition: the label printing
WHILE goes on as long as this condition remain
True.
the FOR condition: only the records
FOR from the active alias that satisfy the con-
dition are used for the label print.

2616

New report

This function permits you to create a standard report form file
(.FRM under the dBaselll standard).

The informations to create a . FRM’ file are divided into two parts:
the head and groups; the columns.

The first part: head and groups, requires the folliwing informa-
tions:

PAGE WIDTH the page width in characters.
LINES PER PAGE the usable lines per page.
LEFT MARGIN the left margin in characters.
DOUBLE SPACED? double spaced print, yes or no.
PAGE EJECT BEFORE .
form feed before print, yes or no.
PRINT?
PAGE EJECT AFTER .
form feed after print, yes or no.
PRINT?
PLAIN PAGE? plain page, yes or no.
the page header, max 4 lines (the sepa-
PAGE HEADER ration between one line and the other is
obtained writing a semicolon, ";").
GROUP HEADER the group title.
the group expression (when it changes,
GROUP EXPRESSION
the group changes)
SUMMARY REPORT
only totals and no columns, yes or no.
ONLY?
PAGE EJECT AFTER | form feed when the group changes, yes
GROUP? Or no.
SUB GROUP HEADER | sub group title.
SUB GROUP EXPRES- .
SION the sub group expression.

The second part: columns, requires the following informations
structured in table form:

2617

column head description (it can contain
COLUMN HEADER : : :

4 lines separated with a semicolon).
CONTENT the column expression.
WIDTH the column width.
DEC. the decimal length for numeric columns.

totals to be calculated, yes or no (usefull
TOTALS :

only for numeric columns).

To navigate and to edit the table use the following keys:

move the cursor one position (up, down,
[Up /[Down /[Left][Righflft or right);
[PgUp] move to previous screen page;
[PgDn] move to next screen page;
[Ctrl PgUp | move to top of table;
[Ctrl PgDn] move to bottom of table;
[Ctrl Home | move to first column;
[Ctrl End] move to last column;
[Ctrl Enter | append a new empty line;
delete (cut) the current line and save a
[Cirl FT) copy into the "clipboard";
[Ctrl F21 copy current line into the table "clip-
board";
insert (paste) the content of the "clip-
[Cirl F3] board" in the current position;
[Enter | start editing in the current position;
[Esc] terminate;
(x] any othe.r. key will be written in the cur-
rent position.

When the editing is terminated, press [Esc] and a dialog box will
ask for the name to give to the report form file.

2618

Modify report

This function permits you to modify a standard report form file
(.FRM under the dBaselll standard).

Report form

This function permits you to print a report form with the data
provided by the active alias.

The following data is required.

REPORT FORM FILE-
NAME the label filename.
the WHILE condition: the form printing
WHILE goes on as long as this condition remain
True.
the FOR condition: only the records
FOR from the active alias that satisfy the con-
dition are used for the report form print.

Create/modify/print text

This function activates the text editor.

Menu HTF

The menu Htf helps on creating and accessing the "Help Text Files".
This name, help text file, 1s just the name given to it.

A text (Asci) file prepared like this manual may be transformed into
a "Help Text File" that is a simple text with pointers.

Open help text file

This function permits to open a Help Text File and browse it. The
Help Text File name is required.

2619

New help text file

This function permits to create a new "Help Text File" that is a
help file under the nB style.

The source 1s an Ascii file where three kind of information are
available: Normal text, Indexes and pointers.

Indexes and Pointers are word or phrases delimited with user de-
fined delimiters; indexes are placed inside the text to indicate an
argument, pointers are placed inside the text to indicate a refer-
ence to indexes.

Inside this manual, indexes are delimited with ## and ##, so the
titles are here indexes; pointers are delimited with < and >.

Only one index per line is allowed, only one pointer per line 1s
allowed.

The Delimiters used do identify indexes and pointers are user
defined; the _start_ identifier symbol can be equal to the _end_
identifier symbol. The symbols used for indexes cannot be used
for the pointers.

So, the informations required are:
SOURCE TEXT FILE-

the filename of the text source file.

NAME
DESTINATION FILE- | the filename of the destination Help Text
NAME File (suggested ‘. HLP’ extention).

INDEX START CODE | the index start symbol; suggested ##.

INDEX END CODE the index end symbol; suggested ##.
POINTER START

CODE
POINTER END CODE | the pointer end symbol; suggested >.

the pointer start symbol; suggested <.

2620

New HTML file

This function permits to create a new HTML file form a text file
formatted to obtain a HTF file.

The informations required are:
SOURCE TEXT FILE-

the filename of the text source file.

NAME
DESTINATION FILE- | the filename of the destination Help Text
NAME File (suggested ‘. HLP’ extention).

INDEX START CODE | the index start symbol; suggested ##.
INDEX END CODE the index end symbol; suggested ##.

POINTER START the pointer start symbol; suggested <.
CODE

POINTER END CODE | the pointer end symbol; suggested >.
HTML TITLE the title for the html page.

Menu Macro

The menu Macro helps on creating macros (programs) with a macro
recorder, a macro "compiler”" and a macro executor.

Start recording
This function simply starts or pause the macro recording. The
menu items that end with "&", may be recorded by this macro
recorder.
Save recording
A recorded macro may be saved into a ASCII file that may be
later modified or simply used as it is. The filename is requested.
Erase recording

While recording or when the macro recorder 1s paused, it 1s pos-
sible to erase all previous recording with this function.

2621

Edit recording

While recording or when the macro recorder is paused, it is possi-
ble to edit all previous recording, for example adding more com-
ments or simply to see what the recorder does.

Macro compilation

A macro file (a program) contained inside a ASCII file, may be
compiled into a different file format to speed up execution. The
source filename and the destination filename are requested.

Load + execute macro

A macro file (a program) in ASCII form or compiled, may be
executed.

A macro file may require some parameters.

This function asks for the macro filename to start and the possible
parameter to pass to it.

Menu Info

The menu Info is the information menu.

ABOUT a brief copyright notice.

starts the browse of ‘NB.HLP’ , the nB Help
Text File manual if it is present in the cur-
rent directory or it is found in the PATH
(the Dos SET PATH).

[F1] HELP [F1] reminder.

(F3] ALIAS INFO [F3] reminder. It shows all the available

information on the active alias. .
[F5] reminder. It defines the output periph-

eral or file.

MANUAL BROWSE

[F5] SET OUTPUT TO

2622

Menu Doc

This menu actually appears only inside the DOC() function, the nB
text editor.

New

It starts the editing of a new empty text.
Open

It opens for editing a new textfile.

Save
It saves the text file under editing.

Save as
It saves the text file under editing asking for a new name.

Set output to
It permits to change the default output peripheral: the default is
the screen.

Print as it is
It prints on the output peripheral the content of the text as it is.

Print with RPT() once

It prints on the output peripheral the content of the text only once
replacing possible text variables.

Print with RPT() std

It prints on the output peripheral the content of the text repeating
this print for every record contained inside the archive alias.

2623

Exit DOC()

Terminates the use of DOC() the text/document editing/print
function.

The text editor DOCQ)

The function Doc() activates a simple text editor usefull to build
some simple reports.

Inside this function a menu is available and is activated pressing
[Alt M] or [FI10]. The Doc() menu is part of the nB menu system.

DOC() may handle text files of a teorical maximum of 64K.

DOC() may be particularly useful to create formatted text with vari-
ables identified by CHR(174) and CHR(175) delimiters: when an
active alias exists, [F2] gives a list of insertable fields.

[Esc] Exit DOC().
[F1] Call the help.
[F2] Field list.
lup|/[Ctrl E'] Line up.
[down]/[Ctrl X] Line down.
[left]/ [Ctrl S] Character left.
[right]/ [Ctri D] Character right.
[Ctrlright]/ [Ctrl A] Word left.

[Ctrl left] /[Ctrl F'] Word right.

[Home | Line start.

[End] Line end.

[Ctrl Home] Top window.

[Ctrl End] Bottom window.
[PgUp] Previous window.
[PgDn] Next window.

2624

[Ctrl PgUp | Document start.

[Ctrl PgDn | End document.

[Del] Delete character (right).
[Backspace | Delete character Left.

[Tab | Insert tab.

[Ins] Toggle insert/overwrite.
[Enter | Next line.

[Ctrl Y] Delete line.

[Ctrl T] Delete word right.
[FI10]/[Alt M] DOC() menu.

The help text file

nB provides a basic hypertext system to build simple help files. A
source text file with "indexes" and "pointers" to indexes 1s translated
into a "help text file" (a <. DBF’ file); then, this file 1s browsed by nB.

The source file can have a maximum line width of 80 characters;
each line can terminate with CR or CR+LF.

"Indexes" are string delimited by index delimiters (default "##");
"pointers" are string delimited by pointer delimiters (default "<" and
">") and refers to indexes.

Inside a text, indexes must be unique; pointers can be repeated any-
where. A text can contain a maximum of 4000 indexes.

Inside this manual, titles are delimited with "##" as they are indexes;
strings delimited with "<" and ">" identify a reference to a title with
the same string.

To browse a previously created Help Text File, use the following
keys:

2625

[Esc] Exit.
[UpArrow] Move cursor up.
[DownArrow | Move cursor down.
[PgUp] Move cursor PageUp.
[PgDn] Move cursor Pagedown.
[Ctrl PgUp | Move cursor Top.
[Ctrl PgDn | Move cursor Bottom.
[Enter] Select a reference (pointer).
[<—] Go to previous selected reference (pointer).
[—>] Go to next selected reference (pointer).
[Shift F3] Search for a new pattern.
[F3] Repeat previous search.
Macro

nB can execute (run) macro files. There may be three kind of macro
files: ASCII (usually with .& extention); "compiled" (usually with
.NB extention); EXE files (compiled with Clipper and linked).

"Compiled" macro files are executed faster then the ASCII source
files.

EXE macro files are the fastest.
Macro statements

The statements recognised from nB are very similar to Clipper, with
some restrictions.

Note that: the FOR statement 1s not included; there is no function
declaration; procedure calls cannot transfer variables; only public
variables are allowed.

2626

PROCEDURE
Procedures are the basic building blocks of a nB macro.
Procedures are visible only inside the current macro file.
The procedure structure is as follows:

PROCEDURE procedure_name
statements ...
[RETURN]

statements ...
ENDPROCEDURE

A procedure definition begins with a PROCEDURE declaration
followed with the procedure_name and ends with ENDPROCE-
DURE.

Inside the PROCEDURE - ENDPROCEDURE declaration are
placed the executable statements which are executed when the
procedure is called.

Inside the PROCEDURE - ENDPROCEDURE declaration, the
RETURN statement may appear. In this case, encountering this
RETURN statement, the procedure execution i1s immediately ter-
minated and control is passed to the statement following the call-
ing one.

The procedure definition do not permit to receive parameters
from the calling statement.

DO PROCEDURE
There 1s only one way to call a procedure:

DO PROCEDURE procedure_name

2627

When the statement DO PROCEDURE i1s encountered, the con-
trol is passed to the begin of the called PROCEDURE. After the
PROCEDURE execution, the control is returned to the statement
following DO PROCEDURE.

The procedure call do not permit to send parameters to the pro-
cedure.

BEGIN SEQUENCE

The BEGIN SEQUENCE - END structure permits to define a
sequence of operation that may be broken.

Inside nB, this control structure is useful only because there is the
possibility to break the execution and pass control over the end
of it.

This way, encountering BREAK means: "go to end".

BEGIN SEQUENCE
statements ...

[BREAK]

statements ...
END

Inside nB, error exception handling is not supported.

DO CASE

This is a control structure where only the statements following a
True CASE condition are executed.

When the DO CASE statement i1s encountered, the following
CASE statements are tested. The first time that a condition re-

turns True, the CASE’s statements are executed and then control
1s passed over the END case.

2628

That is: only one CASE is taken into consideration.

If no condition 1s True, the statements following OTHERWISE
are executed.

DO CASE

CASE IConditionl
Statements ...

[CASE [Condition2 |
statements ...

[OTHERWISE]

statements ...
END

WHILE

The structure WHILE - END defines a loop based on a condition:
the loop 1s repeated until the condition 1s True.

The loop execution may be broken with the EXIT statement: it
transfer control after the END while.

The LOOP statement may be use to repeat the loop: it transfer
the control to the beginning of the loop.

WHILE [Condition
Statements ...
[EXIT]
Statements ..
[LOOP]

statements ...
END

2629

IF

The IF - END control structure executes a section of code if a
specified condition is True. The structure can also specify alter-
native code to execute if the condition 1s False.

IF [lConditionl
statements ...

[ELSE]

statements ...
END

Variable declaration

Inside nB, variables are created using a specific function:

MEMPUBLIC ("cVarName")

For example,

\ MEMPUBLIC ("Name")

creates the variable Name.

The scope of the created variable is global and there i1s no way to
restrict the visibility of it.

When a variable is no more needed or desired, it can be released:

MEMRELEASE ("cVarName")

The variable declaration do not defines the variable type. Every vari-
able may receive any kind of data; that is that the type depends on
the type of data contained.

2630

Macro structure

A nB macro must be organised as follow. There may be two situa-
tions: Macros with procedures and macros without procedures.

Macro with procedures:

PROCEDURE procedure_name_1
Statements ...
[RETURN]
Statements ...
ENDPROCEDURE
PROCEDURE procedure_name_2
Statements ...
[RETURN]
Statements ...

ENDPROCEDURE

DO PROCEDURE procedure_name_n

Macro without procedures:

statements ...
statements ...
statements ...

statements ...
statements ...

nB Macros may be compiled with Clipper. To do so, the first struc-
ture example must be changed as follows:

2631

#INCLUDE MACRO.CH
DO PROCEDURE procedure_name_nth

PROCEDURE procedure_name_1
statements ...
[RETURN]
statements ...
ENDPROCEDURE
PROCEDURE procedure_name_2
statements ...
[RETURN]
statements ...
ENDPROCEDURE

To compile a macro with Clipper, the macro file name can be
changed into ‘MACRO.PRG’ and

\ RTLINK MACRO.RMK [Enter] \

should be started.

Macro comments

A nB Macro source file can contain comments. only the "//" com-
ment is recognised! This way: * and /*...*/ will generate errors!

ATTENTION: to simplify the macro interpretation, lines such as
this:

gqgout ("You can’t do that // you can’t do that!")

will generate an error as the interpreter will read only:

ggout ("You can’t do that

Sorry!

2632

Macro long lines split

n.n

Inside a nB macro, long lines may be splitted using ";" (semicolon).
Please note that: lines can only be splitted and not joined; a resulting
command line cannot be longer then 254 characters.

The macro recorder

Inside the functions ASSIST() and DOC() is available the Macro
recorder menu.

When a macro recording is started, a "&" appears on the left side of
the status bar. It it blinks, the recording is active, if it is stable, the
recording is paused.

The macro recording is not exactly a step-by-step recording of all
action taken, but a translation (as good as possible) of what you have
done.

The macro recorder 1s able to record only the menu functions that
terminates with the "&" symbol and all what is inserted at the dot
command line.

The macro recording can be viewed and edited during the recording.
The macro recording can be saved into a text file (a macro file).

Data types

The data types supported in the nB macro language are the same as
Clipper:

Array

Character

Code Block
2633

Numeric
Date
Logical
Memo
NIL

Character

The character data type identifies character strings of a fixed length.
The character set corresponds to: CHR(32) through CHR(255) and
the null character, CHR(0).

Valid character strings consist of zero or more characters with a the-
oretical maximum of 65535 characters. The real maximum dimen-
sion depends on the available memory.

Character string constants are formed by enclosing a valid string of
characters within a designed pair of delimiters. There are three pos-
sible delimiter pairs:

two single quotes like *’ string_constant’’;
two double quotes like ‘"string_constant"’;
left and right square brackets like ‘[string_constant]’.

These three different kind of delimiters are available to resolve some
possible problems:

[don’t want 1t -> "I don’t want 1t"
She said, "I love hin" -> ’She said, "I love hin"’
He said, "I don’t want it" -> [He said, "I don’t want it"]

The following table shows all operations available inside nB for
2634

character data types. These operations act on one or more character
expressions and the result 1s not necessarily a character data type.

+ Concatenate.

- Concatenate without intervening spaces.
== Compare for exact equity.

I=, <>, # Compare for inequity.

< Compare for sorts before

<= Compare for sorts before or same as.

> Compare for sorts after.

>= Compare for sorts after or same as.

= In line assign.

$ Test for substring existence.
ALLTRIM() Remove leading and trailing spaces.
ASC() Convert to numeric ASCII code equivalent.
AT() Locate substring position.

CTOD() Convert to date.

DESCEND() Convert to complemented form.
EMPTY () Test for null or blank string.
ISALPHA() Test for initial letter.

ISDIGIT() Test for initial digit.

ISLOWER() Test for initial lowercase letter.
ISUPPER() Test for initial uppercase letter.

LEFT() Extract substring form the left.

LEN() Compute string length in characters.
LOWER() Convert letters to lowercase.

LTRIM() Remove leading spaces.

PADC() Pad with leading and trailing spaces.
PADL() Pad with leading spaces.

PADR() Pad with trailing spaces.

RAT() Locate substring position starting from the

right.

2635

RIGHT() Extract substring form the right.
RTRIM() Remove trailing spaces.
SOUNDEX() Convert to soundex equivalent.
SPACE() Create a blank string of a defined length.
STRTRAN() Search and replace substring.
STUFF() Replace substring.
SUBSTR() Extract substring.
TRANSFORM() Convert to formatted string.
UPPER() Convert letters to uppercase
VAL() Convert to numeric.
VALTYPE() Evaluates data type directly.
Memo

The memo data type is used to represent variable length character
data that can only exist in the form of a database field.

Memo fields are not stored inside the main database file (. DBF) but
inside a separate file (DBT).

A memo field can contain up to 65535 characters, that is the same
maximum dimension of character fields. In fact, originally xBases,
couldn’t have character string longer than 254 characters.

As here memo fields are very similar to long character strings, you
may forget that there is a difference.

All the operations that may be applied to character strings, may be
used with memo fields; the following functions may be use espe-
cially for memo fields or long character strings.

HARDCR() Replace soft with hard carriage returns.
MEMOEDIT() Edit contents.

2636

MEMOLINE() Extract a line of a text.
MEMOREAD() Read form a disk text file.
MEMOTRAN() Replace soft and hard carriage returns.
MEMOWRIT() Write to disk text file.
MLCOUNT() Count lines.
MLPOS() Compute position.

Date

The date data type is used to represent calendar dates.

Supported dates are from 0100.01.01 to 2999.12.31 and null or blank
date.

The appearance of a date 1s controlled from
SETVERB("DATEFORMAT"). The default is "dd/mm/yyyy"
and it may easily changed for example with
SETVERB("DATEFORMAT", "MM/DD/YYYY") to the US stan-
dard.

There i1s no way to represent date constants; these must be replaced
with the CTOD() function. For example if the date 11/11/1995 is to
be written, the right way is:

\ CTOD("11/11/1995") ‘

The character string "11/11/1995" must respect the date format de-
fined as before explained.

The function CTOD() will accept only valid dates, and null dates:

‘ CTOD("") ‘

A null date is ever less than any other valid date.

2637

The following table shows all operations available inside nB for date
data types. These operations act on one or more date expressions and
the result 1s not necessarily a character data type.

+ Add a number of days to a date.
- Subtract days to a date.
== Compare for equity.
I=, <>, # Compare for inequity.
< Compare for earlier
<= Compare for earlier or same as.
> Compare for later.
>= Compare for later or same as.
= In line assign.
CDOW() Compute day of week name.
CMONTHY() Compute month name.
DAY () Extract day number.
DESCEND() Convert to complemented form.
DOW() Compute day of week.
Convert to character string with the for-
DTOC() mat defined with SETVERB("DATEFOR-
MAT").
Convert to character string in sorting for-
DOTOS0 mat (YYYYMMDD).
EMPTY () Test for null date.
MONTHY() Extract month number.
VALTYPE() Evaluates data type directly.
YEAR() El);;r.act entire year number, including cen-

2638

Numeric

The numeric data type identifies real number. The theoretical range
is form 107-308 to 107308 but the numeric precision is guaranteed
up to 16 significant digits, and formatting a numeric value for display
1s guaranteed up to a length of 32 (30 digits, a sign, and a decimal
point). That is: numbers longer than 32 bytes may be displayed as
asterisks, and digits other then most 16 significant ones are displayed
as zeroes.

Numeric constants are written without delimiters. The following are
valid constant numbers:

12345
12345.678
-156
+1256.789
-.789

If a numeric constant 1s delimited like character strings, it becomes
a character string.

The following table shows all operations available inside nB for nu-
meric data types. These operations act on one or more numeric ex-
pressions and the result is not necessarily a numeric data type.

+ Add or Unary Positive.

- Subtract or Unary Negative.
* Multiply.

/ Divide.

%o Modulus.

NEE Exponentiate.

2639

== Compare for equity.

I=, <>, # Compare for inequity.

< Compare for less than.

>= Compare for less than or equal.
> Compare for greater than.

>= Compare for greater than or equal.
= In line assign.

ABS() Compute absolute value.
CHR() Convert to ASCII character equivalent.
DESCEND() Convert to complemented form.
EMPTY() Test for zero.

EXP() Exponentiate with e as the base.
INT() Convert to integer.

LOG() Compute natural logarithm.
MAX() Compute maximum.

MIN() Compute minimum.

ROUND() Round up or down()

SQRT() Compute square root.

STR() Convert to character.
TRANSFORM() Convert to formatted string.
VALTYPE() Evaluates data type directly.

Number appearence may be affected by SETVERB("FIXED")
and consequently by SETVERB("DECIMALS"). If
SETVERB("FIXED") 1s True, numbers are displayed with a fixed
decimal position. The number of decimal positions is defined
by SETVERB("DECIMALS"). For that reason, the default is
SETVERB("FIXED", .F.) and SETVERB("DECIMALS", 2), that
1s, no fixed decimal position, but if they will be activated, the default
1s two decimal digits.

2640

Logical

The logical data type identifies Boolean values.

Logical constants are:

R True.
‘.F.’ False.

When editing a logical field, inputs may be:

y, Y, t, T for True
n, N, f, F for False

The following table shows all operations available inside nB for log-
ical data types. These operations act on one or more logical expres-
sions and the result is not necessarily a logical data type.

AND. And.

.OR. Or.

NOT. or ! Negate.

== Compare for equity.
=, <>, or # Compare for inequity.

Comparing two logical values, False (‘.F.’) 1s always less than True
(‘c.T.”).
NIL

NIL is not properly a data type, it represent the value of an unini-
tialised variable.

Inside nB (like what it happens inside Clipper), variables are not
declared with the data type that they will contain. This means that
a variable can contain any kind of data. In fact, nB variables are

2641

pointer to data and a pointer to "nothing" is NIL.

NIL may be used as constant for assignment or comparing purpose:

\ NIL \

Fields (database fields) cannot contain NIL.

The following table shows all operations available inside nB for the
NIL data type. Except for these operations, attempting to operate on
a NIL results in a runtime error.

== Compare for equity.

=, <>, # Compare for inequity.
Compare for less than.

<= Compare for less than or equal.

> Compare for greater than.

>= Compare for greater than or equal.

= In line assign.

EMPTY () Test for NIL.

VALTYPE() Evaluates data type directly.

For the purpose of comparison, NIL is the only value that is equal to
NIL. All other values are greater than NIL.

Variables are created inside nB with MEMPUBLIC(). This function
creates variables which will be automatically initialised to NIL.

Array

The array data type identifies a collection of related data items that
share the same name. Each value in an array is referred to as an
element.

Array elements can be of any data type except memo (memo is avail-
able only inside database fields). For example the first element can

2642

be a character string, the second a number, the third a date and so
on. Arrays can contain other arrays and code blocks as elements.

The variable containing the array does not contains the entire array,
but the reference to it.

When the NIL type was described, it was cleared that variables
doesn’t contains real data, but pointer to data. But this happens
in a transparent way, that is that when the a variable is assigned to
another (for example A := B) the variable receiving the assignment
will receive a pointer to a new copy of the source data. This i1s not
the same with arrays: assigning to a variable an array, will assign
to that variable a pointer to the same source array and not to a new
copy of it.

If arrays are to be duplicated, the ACLONE() function is to be used.

An array constant may be expressed using curly brackets { }. See the
examples below.

A := { "first_element", "second_element", "third_element" }

With this example, the variable A contain the reference to an array
with three element containing character string.

A[1l] == "first_element"
A[2] == "second_element"
A[3] == "third_element"

2643

Arrays may contain also no element: empty array and may be ex-
pressed as:

O |

The array element is identified by a number enclosed with square
brackets, following the variable name containing the reference to
the array. The first array element is one.

If an array contains arrays, we obtain a multidimensional array. For
example:

‘A:z{{l,Z},{3,4},{5,6}} ‘

is equivalent to the following table.

With this example, the variable A contain the reference to a bidi-
mensional array containing numbers.

A[l,1] or A[1][1] contains 1
A[1,2] or A[1][2] contains 2
A[2,1] or A[2][1] contains 3
and so on.

As arrays may contain mixed data, it is the user who have to handle
correctly the element numbers. For example:

2644

A :={ "hello", { 3, 4 }, 1234 }
A[1] == "hello"
A[2] == reference to { 3, 4 }

A[3] == 1234

A[2,1] or A[2][1] contains 3
A[2,2] or A[2][2] contains 4

A[l,1] 1s an error!

The following table shows all operations available inside nB for ar-
rays.

= In line assign.

AADD() Add dynamically an element to an array.

ACLONE() Create a copy of an array.

ACOPY() Ct(l?lpy element by element an array to an-
other.

ADEL() Delete one element inside an array.

AFILL() Fill all array elements with a value.

AINS() Insert an element inside an array.

ARRAY() Creates an array of empty elements.

ASCAN() Scan the array elements.

ASIZE() Resize an array.

ASORT() Sort the array elements.

EMPTY () Test for no elements.

VALTYPE() Evaluates data type directly.

2645

Code block

The code block data type identifies a small piece of executable pro-
gram code.

A code block is something like a little user defined function where

only a sequence of functions or assignments may appear: no loops,
no IF ELSE END.

A code block may receive argument and return a value after execu-
tion, just like a function.

The syntax is:

{1 [argument_list] | exp_list }

That is: the argument_list is optional; the exp_list may contain one
or more expressions separated with a comma.

For example, calling the following code block will give the string
"hello world" as result.

| { || "hello world" } |

The following code block require a numeric argument an returns the
number passed as argument incremented:

| {1 n | nt1} |

The following code block requires two numeric arguments and re-
turns the sum of the two square radix:

‘ { | nFirst, nSecond | SQRT (nFirst) + SQRT (nSecond) } ‘

But code blocks may contains more expressions and the result of the
execution of the code block is the result of the last expression.

2646

The following code block executes in sequence some functions and
give ever "hello world" as a result.

‘ { | a, b | functionOne (a), functionTwo(b), "hello world" } ‘

To start the execution of a code block a function is used: EVAL()

For example, a code block is assigned to a variable and then exe-
cuted.

| B := { || "hello world" } |

EVAL(B) == "hello world"

Another example with a parameter.

| B:={ | n | n+tl}
EVAL(B, 1)==2

Another example with two parameters.

‘ B := { | nFirst, nSecond | SQRT(nFirst) + SQRT (nSecond) }
EVAL(B, 2,4) == 20
And so on.

The following table shows some operations available inside nB for
code blocks: many functions use code blocks as argument.

= In line assign.
Evaluate (execute) a code block for each

AEVALO element in an array.

BCOMPILE() Convert (compile) a character string into a
code block.

DBEVAL() EvaluaFe (exeche) a -code block for each
record in the active alias.

EVAL() Evaluate a code block once.

VALTYPE() Evaluates data type directly.

2647

Operators

Here 1s a list with a brief description of the operators available inside
nB.

cStringl $ cString2

Substring comparison.

If ¢Stringl is contained inside ¢String2 the result is true (‘. T.”).

nNumberl % nNumber2

Modulus.
The result is the remainder of nNumberl divided by nNuber?2 .

()

Function or grouping indicator.

nNumberl » nNumber2

Multiplication.

nNumberl x» nNumber2
nNumberl ~ nNumber2

Exponentiation.

2648

nNumberl + nNumber2
dDate + nNumber

Addition, unary positive.

cStringl + cString2

String concatenation.

The result 1s a string beginning with the content of ¢Stringl and
following with the content of ¢String2.

nNumberl - nNumber2

dDatel - dDate2
dDate — nNumber

Subtraction, unary negative.

cStringl - cString2

String concatenation.

The result 1s a string containing c¢Stringl after trimming trailing
blanks and cString?2.

idAlias —>idField
FIELD->idVar
MEMVAR->idVar

Alias assignment.

2649

The alias operator implicitly SELECTSs the idAlias before evaluating
idField. When the evaluation is complete, the original work area is
SELECTed again.

[Conditionl] .AND. IlCondition2

Logical AND.

.NOT. ICondition

Logical NOT.

[Conditionl .OR. I[Condition2

Logical OR.

nNumberl / nNumber2

Division.

object : message [(argument list)]

Send.

idVar := exp

Inline assign.

expl <= exp2

2650

Less than or equal.

expl <> exp2

Not equal.

expl = exp2

Equal.

expl == exp2

Exactly equal.

expl > exp2

Greater than.

expl >= exp2

Greater than or equal.

QidVar

Pass-by-reference.

[]

aArray [nSubscript, ...]
aArray [nSubscriptl 1 [nSubscript2]

2651

Array element indicator.

Delimiters

Here 1s the delimiter list recognised from nB.

{ exp_list }

Literal array delimiters.

{ |param_list| exp_list }

Code block delimiters.

"cString "
" cString’
[cString]

String delimiters.

Code blocks

A code block is a sequence of function, assignments and constant
like the following:

sqgrt (10)
nResult := 10 % nIndex

Suppose that the above sequence of operations has a meaning for
you. We want to create a box containing this sequence of operation.
This box 1s contained inside a variable:

‘ bBlackBox := { || sgrt(10), nResult := 10 * nIndex } ‘

Note the comma used as separator.
2652

Now bBlackBox contains the small sequence seen before. To exe-
cute this sequence, the function EVAL() is used:

| EVATL (bBlackBox) |

The execution of the code block gives a result: the value of the last
operation contained inside the code block. In this case it is the result
of 10*nIndex. For that reason, if the execution of the code block
must give a fixed result, it can terminate with a constant.

A code block may receive parameters working like a function. Try
to imagine that we need to do the following.

function multiply(nVarl, nVar2)

return nVar % nVar?2

endfunction

A code block that does the same 1is:

‘ bMultiply := { | nVarl, nVar2 | nVarl x nVar2 } ‘

To evaluate it, for example trying to multiply 10 * 3:

| nResult := EVAL(bMultiply, 10, 5) |

and nResult will contain 50.

Standard functions

With nB all Clipper standard functions may be used. Here follows a
short description.

AADDQ
Array add

AADD (aTlarget, expValue) =- Value

2653

alarget 1s the array to add a new element to.
expValue is the value assigned to the new element.

It increases the actual length of the target array by one. The newly
created array element is assigned the value specified by expValue.

ABSQ

Absolute

ABS (nExp) = nPositive

nExp 1s the numeric expression to evaluate.

ABS() returns a number representing the absolute value of its argu-
ment.

ACLONEQ

Array clone

ACLONE (aSource) =- aDuplicate

aSource is the array to duplicate.

ACLONE)() returns a duplicate of aSource.

2654

ACOPY(Q)

Array copy

ACOPY (aSource, alarget,

[nStart] ,

[nCount] ,

[nTargetPos|) = aTarget

aSource

1s the array to copy elements from.

alarget

is the array to copy elements to.

nStart

1s the starting element position in the
aSource array. If not specified, the default
value is one.

nCount

1s the number of elements to copy from the
aSource array beginning at the nStart po-
sition. If nCount is not specified, all ele-
ments in aSource beginning with the start-
ing element are copied.

nlargetPos

is the starting element position in the
alarget array to receive elements from
aSource. If not specified, the default value
1S one.

ACOPY() is an array function that copies elements from the
aSource array to the alarget array. The aTarget array must already
exist and be large enough to hold the copied elements.

ADELQ

Array delete

ADEL (aTlarget, nPosition)

= alarget

2655

alarget 1s the array to delete an element from.
1s the position of the target array element
to delete.

nPosition

ADEL() i1s an array function that deletes an element from an array.
The contents of the specified array element is lost, and all elements
from that position to the end of the array are shifted up one element.
The last element in the array becomes NIL.

AEVALQ

Array evaluation

AEVAL (aArray, bBlock,
[nStart] , [nCount]) = aArray

aArray 1s the array to be evaluated.

1s a code block to execute for each element
bBlock

encountered.

1s the starting element. If not specified, the

default is element one.
is the number of elements to process from

nCount nStart. If not specified, the default is all
elements to the end of the array.

nStart

AEVAL() is an array function that evaluates a code block once for
each element of an array, passing the element value and the element
index as block parameters. The return value of the block is ignored.
All elements in aArray are processed unless either the nStart or the
nCount argument is specified.

2656

AFILLO
Array fill

AFILL (alarget, expValue,

[nStart] , [nCount]) = aTarget

alarget

1s the array to fill.

expValue

is the value to place in each array element.
It can be an expression of any valid data

type.

nStart

1s the position of the first element to fill. If
this argument is omitted, the default value
1S One.

nCount

is the number of elements to fill starting
with element nStart. If this argument is
omitted, elements are filled from the start-
ing element position to the end of the array.

AFILL() 1s an array function that fills the specified array with a sin-
gle value of any data type (including an array, code block, or NIL)
by assigning expValue to each array element in the specified range.

AINSQO

Array insert

AINS (aTarget, nPosition)

=

alarget

is the array into which a new element will
alarget ,
be inserted. _
.o is the position at which the new element
nPosition : .
will be inserted.

2657

AINS() 1s an array function that inserts a new element into a speci-
fied array. The newly inserted element is NIL data type until a new
value 1s assigned to it. After the insertion, the last element in the
array 1s discarded, and all elements after the new element are shifted
down one position.

ALERTO

ALERT (cMessage, [aOptions|) = nChoice

is the message text displayed, centered, in
the alert box. If the message contains one
cMessage or more semicolons, the text after the semi-
colons is centered on succeeding lines in

the dialog box.
defines a list of up to 4 possible responses

to the dialog box.

aOptions

ALERT() returns a numeric value indicating which option was cho-
sen. If the Esc key is pressed, the value returned is zero. The
ALERT() function creates a simple modal dialog. The user can re-
spond by moving a highlight bar and pressing the Return or Space-
Bar keys, or by pressing the key corresponding to the first letter of
the option. If aOptions is not supplied, a single "Ok" option is pre-
sented.

ALIASO

ALIAS ([nWorkArea]) = cAlias

2658

nWorkArea is any work area number.

ALIAS() returns the alias of the specified work area as a character
string. If nWorkArea is not specified, the alias of the current work
area is returned. If there is no database file in USE for the specified
work area, ALIAS() returns a null string ("").

ALLTRIMO

ALLTRIM (¢String) = cTrimmedString

cString 1s the character expression to trim.

ALLTRIM() returns a character string with leading and trailing
spaces removed.

ARRAY()

ARRAY (nElements [, nElements...]) = aArray

1s the number of elements in the specified

nElements))
dimension.

ARRAY () is an array function that returns an uninitialized array with
the specified number of elements and dimensions.

2659

ASCQ
ASCII

ASC (cExp) = nCode

is the character expression to convert to a

cExp
number.

ASC() returns an integer numeric value in the range of zero to 255,
representing the ASCII value of cExp.

ASCANOQO

Array scan

ASCAN (aTlarget, expSearch,
[nStart], [nCount]) = nStoppedAt

alarget is the array to scan.

1s either a simple value to scan for, or a
code block. If expSearch is a simple value
it can be character, date, logical, or nu-

meric type.
1s the starting element of the scan. If this

nStart argument is not specified, the default start-
ing position is one.

1s the number of elements to scan from the
starting position. If this argument is not
specified, all elements from the starting el-
ement to the end of the array are scanned.

expSearch

nCount

2660

ASCAN() returns a numeric value representing the array position of
the last element scanned. If expSearch is a simple value, ASCAN()
returns the position of the first matching element, or zero if a match
i1s not found. If expSearch is a code block, ASCAN() returns the
position of the element where the block returned true (. T.").

ASIZEQ

Array size

ASIZE (aTlarget, nlLength) = aTarget

alarget is the array to grow or shrink.
nLength 1s the new size of the array.

ASIZE() 1s an array function that changes the actual length of the
alarget array. The array is shortened or lengthened to match the
specified length. If the array is shortened, elements at the end of the
array are lost. If the array is lengthened, new elements are added to
the end of the array and assigned NIL.

ASORT()

Array sort

ASORT (aTarget, [nStart] ,
[nCount] , [bOrder]) = aTarget

alarget is the array to sort.
1s the first element of the sort. If not speci-
fied, the default starting position is one.

2661

nStart

1s the number of elements to sort. If not
nCount specified, all elements in the array begin-

ning with the starting element are sorted.
1s an optional code block used to determine

bOrder sorting order. If not specified, the default
order is ascending.

ASORT() is an array function that sorts all or part of an array con-
taining elements of a single data type. Data types that can be sorted
include character, date, logical, and numeric. If the bOrder argu-
ment is not specified, the default order is ascending. Each time the
block is evaluated, two elements from the target array are passed as
block parameters. The block must return true (‘. T.’) if the elements
are in sorted order.

ATQ

AT (cSearch, cTarget) =- nPosition

i1s the character substring for which to
cSearch

search.
clarget 1s the character string to search.

AT() returns the position of the first instance of cSearch within
cTarget as an integer numeric value. If ¢Search is not found, AT()
returns zero.

AT() 1s a character function used to determine the position of the first
occurrence of a character substring within another string.

2662

ATAILO

Array TAIL

ATAIL (aArray) = Element

aArray is the array.

ATAIL() 1s an array function that returns the highest numbered el-
ement of an array. It can be used in applications as shorthand for
aArray[LEN(aArray)] when you need to obtain the last element of
an array.

BIN2I()

Binary to integer

BIN2T (cSignedInt) = nNumber

is a character string in the form of a 16-
cSignedInt bit signed integer number--least significant
byte first.

BIN2I() returns an integer obtained converting the first two byte con-
tained inside cSignedlInt.

BIN2LO

Binary to long

BIN2L (cSignedInt) = nNumber

2663

is a character string in the form of a 32-
cSignedInt bit signed integer number--least significant
byte first.

BIN2L() returns an integer obtained from the first tour characters
contained in cSignedlInt.

BIN2W(Q)

Binary to word

BIN2W (cUnsignedInt) = nNumber

is a character string in the form of a 16-bit
cUnsignedlnt unsigned integer number--least significant
byte first.

BIN2W() returns an integer obtained from the first two characters
contained in cSignedlInt.

BOFQ

Begin of file

BOF () = lBoundary

BOF() returns true (‘. T.’) after an attempt to SKIP backward be-
yond the first logical record in a database file; otherwise, it returns
false (‘.¥.’). If there is no database file open in the current work
area, BOF() returns false (‘.¥.’). If the current database file con-
tains no records, BOF() returns true (‘. T.").

2664

CDOWQ

Character day of week

CDOW (dExp) = cDayName

dExp 1s the date value to convert.

CDOW() returns the name of the day of the week as a character
string. The first letter is uppercase and the rest of the string is low-
ercase. For a null date value, CDOW() returns a null string ("").

CHRO

Character

CHR (nCode) = cChar

1s an ASCII code in the range of zero to

nCode)55,

CHR() returns a single character value whose ASCII code is speci-
fied by nCode.

CMONTHO

Character month

CMONTH (dDate) = cMonth

dDate 1s the date value to convert.

2665

CMONTH() returns the name of the month as a character string from
a date value with the first letter uppercase and the rest of the string
lowercase. For a null date value, CMONTHY() returns a null string

"),
COLO

Column

COL () = nCol

COL() 1s a screen function that returns the current column position of
the cursor. The value of COL() changes whenever the cursor position
changes on the screen.

COLORSELECTO

COLORSELECT (nColorIndex) = NIL

is a number corresponding to the ordinal
nColorIndex positions in the current list of color at-
tributes, as set by SETCOLOR().

COLORSELECT() activates the specified color pair from the current
list of color attributes (established by SETCOLOR()).

CTOD()

Character to date

CTOD (cDate) = dDate

2666

1s a character string consisting of numbers
representing the month, day, and year sep-
arated by any character other than a num-
ber. The month, day, and year digits must
be specified in accordance with the SET
DATE format. If the century digits are not
specified, the century is determined by the
rules of SET EPOCH.

cDate

CTOD() returns a date value. If cDate 1s not a valid date, CTOD()
returns an empty date.

CURDIRO

Current directory

CURDIR ([cDrivespec|) = cDirectory

specifies the letter of the disk drive to
cDrivespec query. If not specified, the default is the
current DOS drive.

CURDIR() returns the current DOS directory of the drive specified
by eDrivespec as a character string without either leading or trailing
backslash (\) characters.

DATEQ

DATE () = dSystemDate

DATE() returns the system date as a date value.
2667

DAY()

DAY (dDate) = nDay

dDate 1s a date value to convert.

DAY () returns the day number from dDate.
DBAPPENDQ

DBAPPEND ([lReleaseRecLocks]) = NIL

i1s a logical data type that if true
(‘.T.’), clears all pending record locks,
then appends the next record. If
IReleaseRecLocks is false (‘.F.’), all
pending record locks are maintained and
the new record is added to the end of
the Lock List. The default value of
IReleaseRecLocks is true (‘. T.).

[ReleaseRecLocks

DBAPPEND() adds a new empty record to the active alias.
DBCLEARFILTERQ

DBCLEARFILTER() = NIL

DBCLEARFILTER() clears the logical filter condition, if any, for
the current work area.

2668

DBCLEARINDEXQO

DBCLEARINDEX () = NIL

DBCLEARINDEX() closes any active indexes for the active alias.
DBCLEARRELATIONQ

DBCLEARRELATION () = NIL

DBCLEARRELATION() clears any active relations for the active
alias.

DBCLOSEALLQ)

DBCLOSEALL () = NIL

DBCLOSEALL() releases all occupied work areas from use. It is
equivalent to calling DBCLOSEAREA() on every occupied work
area.

Attention: DBCLOSEALL() cannot be used inside a "compiled"
macro as this will stop the macro execution. In substitution, DB-
CLOSE() should be used.

2669

DBCLOSEAREAQ

DBCLOSEAREA () = NIL

DBCLOSEAREA() releases the current work area from use.
DBCOMMIT()

DBCOMMIT () = NIL

DBCOMMIT() causes all updates to the current work area to be writ-
ten to disk. All updated database and index buffers are written to
DOS and a DOS COMMIT request is issued for the database (.dbf)
file and any index files associated with the work area. Inside a net-
work environment, DBCOMMIT() makes database updates visible
to other processes. To insure data integrity, issue DBCOMMIT()
before an UNLOCK operation.

DBCOMMITALLO

DBCOMMITALL () = NIL

DBCOMMITALL() causes all pending updates to all work areas to
be written to disk. It is equivalent to calling DBCOMMIT() for every
occupied work area.

2670

DBCREATEQ)

DBCREATE (cDatabase, aStruct, [cDriver]) = NIL

1s the name of the new database file, with
an optional drive and directory, specified
as a character string. If specified without

an extension (.dbf) is assumed.
1s an array that contains the structure of

cDatabase as a series of subarrays, one per
field. Each subarray contains the definition
of each field’s attributes and has the fol-
aStruct lowing structure:

aStruct[n][1] == cName

aStruct[n][2] == cType

aStruct[n][3] == nLength

aStruct{n][4] == nDecimals

specifies the replaceable database driver

(RDD) to use to process the current work
area. cDriver 1s name of the RDD speci-
fied as a character expression.

cDatabase

cDriver

DBCREATE() is a database function that creates a database file from
an array containing the structure of the file.

DBCREATEINDEXQO

DBCREATEINDEX (cIndexName, cKeyExpr, bKeyExpr, [lUnique])
= NIL

2671

is a character value that specifies the file-
cIndexName name of the index file (order bag) to be cre-

ated.
is a character value that expresses the index

cKeyExpr key expression in textual form.
is a code block that expresses the index key
bKeyExpr expression in executable form.
is an optional logical value that specifies
: whether a unique index is to be created.
lUnique

If lUnique is omitted, the current global
_SET_UNIQUE setting is used.

DBCREATEINDEX() creates an index for the active alias. If the
alias has active indexes, they are closed.

DBDELETEQ

DBDELETE () = NIL

DBDELETE() marks the current record as deleted (*). Records
marked for deletion can be filtered using SET DELETED or re-
moved from the file using the PACK command.

DBEVALO

DB evaluate

2672

DBEVAL (bBlock,
[bForCondmon] ,
[bWhlleCondmon] ,
[nNextRecords] ,
[nRecord] ,
[[Rest]) = NIL
is a code block to execute for each record
bBlock processed.
bForCondition]tjlie 1fOR condition expressed as code
ock.
. . the WHILE condition expressed as code
bWhileCondition block. P
i1s an optional number that specifies the
aNextRecords number of records to process starting with
the current record. It is the same as the
NEXT clause.
1s an optional record number to process.
If this argument is specified, bBlock will
nRecord be evaluated for the specified record. This
argument is the same as the RECORD
clause.
1s an optional logical value that determines
IRest whether the scope of DBEVAL() is all
records, or, starting with the current record,
all records to the end of file.

DBEVAL() is a database function that evaluates a single block for
each record within the active alias.

2673

DBFILTERQ

DBFILTER () = cFilter

BFILTER() returns the filter condition defined in the current work
area as a character string. If no FILTER has been SET, DBFILTER()

returns a null string ("").

DBGOBOTTOMQ)

DBGOBOTTOM () = NIL

DBGOBOTTOM() moves to last logical record in the active alias.
DBGOTOQ

DBGOTO (nRecordNumber) = NIL

is a numeric value that specifies the record
number of the desired record.

nRecordNumber

DBGOTO() moves to the record whose record number is equal to

nRecordNumber. If no such record exists, the work area is posi-
tioned to LASTREC() + 1 and both EOF() and BOF() return true

(‘.T.’).

2674

DBGOTOP(O

DBGOTOP () = NIL

DBGOTOP() moves to the first logical record in the current work
area.

DBRECALLQ

DBRECALL () = NIL

DBRECALL() causes the current record to be reinstated if it is
marked for deletion.

DBREINDEXQ)

DBREINDEX () = NIL

DBREINDEX() rebuilds all active indexes associated with the active
alias.

DBRELATIONQ

DBRELATION (nRelation) = cLinkExp

is the position of the desired relation in the

nRelation .)) i
list of active alias relations.

DBRELATIONY() returns a character string containing the linking
2675

expression of the relation specified by nRelation. If there is no RE-
LATION SET for nRelation, DBRELATION() returns a null string

"),
DBRLOCKO

DB record lock

DBRLOCK ([nRecNo]) = ISuccess

1s the record number to be locked. The de-

nRecNo :
fault 1s the current record.

DBRLOCK() 1s a database function that locks the record identified
by nRecNo or the current record.

DBRLOCKLISTO

DBRLOCKLIST () = aRecordLocks

DBRLOCKLIST() returns a one-dimensional array of the locked
records in the active alias.

DBRSELECTQO

DB relation select

DBRSELECT (nRelation) = nWorkArea

is the position of the desired relation in the
list of current work area relations.

nRelation

2676

DBRSELECT() returns the work area number of the relation speci-

fied by nRelation as an integer numeric value. If there is no RELA-
TION SET for nRelation, DBRSELECT() returns zero.

DBRUNLOCKQ)

DB relation unlock

DBRUNLOCK ([nRecNo]) = NIL

nRecNo

1s the record number to be unlocked. The
default is all previously locked records.

DBRUNLOCK() is a database function that unlocks the record iden-
tified by nRecNo or all locked records.

DBSEEKQO

DBSEEK (expKey,

[ISoftSeek]) = IFound

expKey

is a value of any type that specifies the key
value associated with the desired record.

ISoftSeek

is an optional logical value that specifies
whether a soft seek is to be performed.
This determines how the work area is po-
sitioned if the specified key value is not
found. If ISoftSeek is omitted, the current
global _SET_SOFTSEEK setting is used.

DBSEEK() returns true (‘. T.’) if the specified key value was found;
otherwise, it returns false (‘*.F.”).

2677

DBSELECTAREAQ

DBSELECTAREA (nArea | cAlias) = NIL

nArea

1S a numeric value between zero and 250,
inclusive, that specifies the work area being
selected.

cAlias

1s a character value that specifies the alias
of a currently occupied work area being se-
lected.

DBSELECTAREA() causes the specified work area to become the
current work area. All subsequent database operations will apply to
this work area unless another work area is explicitly specified for an

operation.

DBSETDRIVERQ

DBSETDRIVER ([cDriver]) = cCurrentDriver

cDriver

is an optional character value that specifies
the name of the database driver that should
be used to activate and manage new work
areas when no driver is explicitly specified.

DBSETDRIVER() returns the name of the current default driver.

2678

DBSETFILTERQ

DBSETFILTER (bCondition, [cCondition]) = NIL

is a code block that expresses the filter con-

dition in executable form.
1s a character value that expresses the filter

condition in textual form. If cCondition
cCondition 1s omitted, the DBSETFILTER() function
will return an empty string for the work
area.

bCondition

DBSETFILTER() sets a logical filter condition for the current work
area. When a filter is set, records which do not meet the filter con-
dition are not logically visible. That is, database operations which
act on logical records will not consider these records. The filter ex-
pression supplied to DBSETFILTER() evaluates to true (‘. T.”) if the
current record meets the filter condition; otherwise, it should evalu-
ate to false (*.F.”).

DBSETINDEXQO

DBSETINDEX (cOrderBagName) = NIL

is a character value that specifies the file-
cOrderBagName name of the index file (index bag) to be
opened.

DBSETINDEX() is a database function that adds the contents of an
Order Bag into the Order List of the current work area. Any Orders

2679

already associated with the work area continue to be active. If the
newly opened Order Bag 1s the only Order associated with the work
area, it becomes the controlling Order; otherwise, the controlling
Order remains unchanged. If the Order Bag contains more than one
Order, and there are no other Orders associated with the work area,
the first Order in the new Order Bag becomes the controlling Order.

DBSETORDERQ

DBSETORDER (nOrderNum) = NIL

i1s a numeric value that specifies which of
nOrderNum the active indexes is to be the controlling
index.

DBSETORDER() controls which of the active alias’ active indexes
1s the controlling index.

DBSETRELATIONQO

DBSETRELATION (nArea | cAlias, bExpr, [cExpr]) = NIL

nAred is a numeric value that specifies the work
area number of the child work area.
. 1s a character value that specifies the alias
cAlias :
of the child work area. _
is a code block that expresses the relational
bExpr ..
expression in executable form.

2680

cExpr

1s an optional character value that ex-
presses the relational expression in textual
form. If cExpr is omitted, the DBRELA-
TION() function returns an empty string
for the relation.

DBSETRELATIONY() relates the work area specified by nArea or
cAlias (the child work area), to the current work area (the parent
work area). Any existing relations remain active.

DBSKIPQ

DBSKIP ([nRecords]) = NIL

nRecords

1s the number of logical records to move,
relative to the current record. A positive
value means to skip forward, and a neg-
ative value means to skip backward. If
nRecords is omitted, a value of 1 is as-
sumed.

DBSKIP() moves either forward or backward relative to the current
record. Attempting to skip forward beyond the last record positions
the work area to LASTREC() + 1 and EOF() returns true (‘. T.”).
Attempting to skip backward beyond the first record positions the
work area to the first record and BOF() returns true (‘. T.’).

2681

DBSTRUCTO

DBSTRUCT () = aStruct

DBSTRUCT() returns the structure of the current database file in an
array whose length is equal to the number of fields in the database
file. Each element of the array is a subarray containing information
for one field. The subarrays have the following format:

aStruct[n][1] == cName
aStruct[n][2] == cType
aStruct[n][3] == nLength
aStruct[n][4] == nDecimals

If there i1s no database file in USE in the current work area, DB-
STRUCT() returns an empty array ({}).

DBUNLOCKQ

DBUNLOCK () = NIL

DBUNLOCK() releases any record or file locks obtained by the cur-
rent process for the current work area. DBUNLOCK() is only mean-
ingful on a shared database in a network environment.

DBUNLOCKALLQO

DBUNLOCKALL () = NIL

2682

DBUNLOCKALL() releases any record or file locks obtained by
the current process for any work area. DBUNLOCKALLY() is only
meaningful on a shared database in a network environment.

DBUSEAREAQ

DBUSEAREA ([lNewArea] , [cDriver] , cName, [chlias] ,
[lShared] , [lReadonly]) = NIL

is an optional logical value. A value of true
(‘. T.”) selects the lowest numbered unoc-
cupied work area as the current work area
INewArea before the use operation. If INewArea is
false (‘.F.’) or omitted, the current work
area 1s used; if the work area is occupied,

it is closed first.
is an optional character value. If present,

it specifies the name of the database driver
cDriver which will service the work area. If
cDriver 1s omitted, the current default

driver is used.
specifies the name of the database (.dbf)

file to be opened.
1s an optional character value. If present, it

specifies the alias to be associated with the
work area. The alias must constitute a valid
identifier. A valid xcAlias may be any le-
xcAlias gal identifier (i.e., it must begin with an
alphabetic character and may contain nu-
meric or alphabetic characters and the un-
derscore). If xcAlias 1s omitted, a default
alias is constructed from cName.

2683

cName

IShared

is an optional logical value. If present, it
specifies whether the database (.dbf) file
should be accessible to other processes on
a network. A value of true (*.T.’) speci-
fies that other processes should be allowed
access; a value of false (‘.F.’) specifies
that the current process is to have exclusive
access. If IShared is omitted, the current
global _SET_EXCLUSIVE setting deter-
mines whether shared access is allowed.

[Readonly

is an optional logical value that specifies
whether updates to the work area are pro-
hibited. A value of true (‘. T.”) prohibits
updates; a value of false (‘.F.’) permits
updates. A value of true (*.T.’) also
permits read-only access to the specified
database (.dbf) file. If IReadonly is omit-
ted, the default value is false (‘. F.’).

DBUSEAREA() opens the specified database (.DBF).

DBDELETEQ

DELETED ()

= [Deleted

DELETED() returns true (‘. T.”) if the current record is marked for
deletion; otherwise, it returns false (‘.F.”). If there is no database
file in USE in the current work area, DELETED() returns false

(“.F.’).

2684

DESCENDQ

DESCEND (exp) =- Valuelnverted

is any valid expression of character, date,

ex, . .
P logical, or numeric type.

DESCEND() returns an inverted expression of the same data type
as the exp, except for dates which return a numeric value. A DE-
SCEND() of CHR(0) always returns CHR(0).

DEVOUT(

Device output

DEVOUT (exp, [cColorString]) = NIL

€xp is the value to display.
cColorString 1s an optional argument that defines the dis-
play color of exp.

DEVOUTY() 1s a full-screen display function that writes the value
of a single expression to the current device at the current cursor or
printhead position.

DEVOUTPICTO

Device output picture

DEVOUTPICT (exp, cPicture, [cColorString]) = NIL

2685

exp 1s the value to display.

defines the formatting control for the dis-
play of exp.

is an optional argument that defines the dis-
play color of exp.

cPicture

cColorString

DEVOUTPICT() is a full-screen display function that writes the
value of a single expression to the current device at the current cursor
or printhead position.

DEVPOSQO

Device position

DEVPOS (nRow, nCol) = NIL

are the new row and column positions of

nRow, nCol the cursor or printhead.

DEVPOS() 1s an environment function that moves the screen or
printhead depending on the current DEVICE.

DIRECTORY()

DIRECTORY (cDirSpec, [cAttributes]|) = aDirectory

identifies the drive, directory and file spec-
ification for the directory search. Wild-
cDirSpec cards are allowed in the file specification.
If cDirSpec is omitted, the default value is
& ok

2686

specifies inclusion of files with special
attributes in the returned information.
cAttributes is a string containing one or
more of the following characters:

H Include hidden files

S Include system files

D Include directories

V Search for the DOS volume label only
Normal files are always included in the
search, unless you specify V.

CAttributes

DIRECTORY() returns an array of subarrays, with each subarray
containing information about each file matching eDirSpec. The sub-
array has the following structure:

aDirectory[n][1] == cName
aDirectory[n][2] == cSize
aDirectory[n][3] == dDate
aDirectory[n][4] == cTime
aDirectory[n][5] == cAttributes

If no files are found matching cDirSpec or if cDirSpec is an ille-
gal path or file specification, DIRECTORY () returns an empty ({})
array.

DISKSPACEQ

DISKSPACE ([nDrive]) = nBytes

2687

nDrive

is the number of the drive to query, where
one i1s drive A, two 18 B, three 1s C, etc. The
default is the current DOS drive if nDrive
i1s omitted or specified as zero.

DISKSPACE() returns the number of bytes of empty space on the
specified disk drive as an integer numeric value.

DISPBOXO

Display box

DISPBOX (nTop, nLeft, nBottom, nRight,

[cnBoxString | ,

[cColorString|) = NIL

nTop, nlLeft,
nRight

nBottom,

define the coordinates of the box.

cnBoxString

is a numeric or character expression that
defines the border characters of the box. If
specified as a numeric expression, a value
of 1 displays a single-line box and a value
of 2 displays a double-line box. All other
numeric values display a single-line box. If
cnBoxString is a character expression, it
specifies the characters to be used in draw-
ing the box. This is a string of eight border
characters and a fill character.

cColorString

defines the display color of the box that is
drawn.

DISPBOX() is a screen function that draws a box at the specified
display coordinates in the specified color.

2688

DISPOUTO

Display out

DISPOUT (exp, [cColorString]) = NIL

exp is the value to display.
1s an optional argument that defines the dis-

play color of exp.
1s a character expression containing the

standard color setting.

cColorString

cColorString

DISPOUTY() is a simple output function that writes the value of a
single expression to the display at the current cursor position. This
function ignores the SET DEVICE setting; output always goes to the
screen.

DOWOQ

Day of week

DOW (dDate) = nDay

dDate 1s a date value to convert.

DOW() returns the day of the week as a number between zero and
seven. The first day of the week is one (Sunday) and the last day is
seven (Saturday). If dDate is empty, DOW() returns zero.

2689

DTOCQO

Date to character

DTOC (dDate) = cDate

dDate 1s the date value to convert.

DTOC() returns a character string representation of a date value. The
return value is formatted in the current date format. A null date
returns a string of spaces equal in length to the current date format.

DTOSO

Date to sort

DTOS (dDate) = cDate

dDate 1s the date value to convert.

DTOS() returns a character string eight characters long in the form,
yyyymmdd. When dDate is a null date (CTOD("")), DTOS() returns
a string of eight spaces.

EMPTYQ

EMPTY (exp) = IEmpty

exp is an expression of any data type.

2690

EMPTY() returns true (‘. T.’) if the expression results in an empty
value; otherwise, it returns false (‘. F.’):

Array 0
Character/Memo Spaces, tabs, CR/LF, or ""
Numeric 0
Date CTOD(”")
Logical C
NIL NIL

EOFQ

End of file

EOF () = lBoundary

EOF() returns true (‘. T.’) when an attempt is made to move the
record pointer beyond the last logical record in a database file; oth-
erwise, it returns false (‘. ¥.”). If there is no database file open in
the current work area, EOF() returns false (‘.F.’). If the current
database file contains no records, EOF() returns true (‘. T.’).

EVALO

Code block evaluation

EVAL (bBlock, [BlockArg_list]) = LastBlockValue

bBlock 1s the code block to evaluate.
BlockArg list 1s a list of arguments to send to the code

block before it is evaluated.

2691

To execute or evaluate a code block, call EVAL() with the block
value and any parameters. The parameters are supplied to the block
when it is executed. Code blocks may be a series of expressions
separated by commas. When a code block is evaluated, the returned
value is the value of the last expression in the block.

EXPO

Exponent

EXP (nExponent) =- nAntilogarithm

i1s the natural logarithm for which a nu-

nExponent) ,
meric value is to be calculated.

EXP() returns a numeric value that is equivalent to the value e raised
to the specified power.

FCLOSEQ

File close

FCLOSE (nHandle) = IError

is the file handle obtained previously from

nHandle FOPEN() or FCREATE().

FCLOSE() is a low-level file function that closes binary files and

forces the associated DOS buffers to be written to disk. If the oper-
ation fails, FCLOSE() returns false (‘.F.”). FERROR() can then be
used to determine the reason for the failure.

2692

FCOUNTO

Field count

FCOUNT () = nFields

FCOUNT() returns the number of fields in the database file in the
active alias as an integer numeric value. If there 1s no database file
open, FCOUNT() returns zero.

FCREATEQ

Field create

FCREATE (cFile, [nAttribute]) = nHandle

1s the name of the file to create. If the
cFile file already exists, its length is truncated to

zero without warning.
is the binary file attribute, the default value

1S zero.

nAttribute = 0 Normal (default)
nAttribute = 1 Read-only
nAttribute = 2 Hidden
nAttribute = 4 System

nAttribute

FCREATEY() returns the DOS file handle number of the new binary
file in the range of zero to 65,535. If an error occurs, FCREATE()
returns -1 and FERROR() is set to indicate an error code.

2693

FERASEQ

File erase

FERASE (cFile) = nSuccess

is the name (with or without path) of the
file to be deleted from disk.

cFile

FERASE() is a file function that deletes a specified file from disk.
FERASE() returns -1 if the operation fails and zero if it succeeds.

FERRORQ)

File error

FERROR () = nErrorCode

FERROR() returns the DOS error from the last file operation as an
integer numeric value. If there is no error, FERROR() returns zero.

nErrorCode value Meaning

Successful
File not found

Path not found
Too many files open

Access denied

Invalid handle

Insufficient memory

Invalid drive specified

Attempted to write to a write-protected
disk

Drive not ready

2694

— 0| N N | A~ WIN O

)

[a—
\O

\9
[U—

nErrorCode value Meaning

23 Data CRC error
29 Write fault

30 Read fault

32 Sharing violation
33 Lock Violation

FERROR() is a low-level file function that indicates a DOS error
after a file function is used.

FIELDBLOCKQ

FIELDBLOCK (cFieldName) = bFieldBlock

cFieldName is the name of the field to which the set-get
block will refer.

FIELDBLOCK() returns a code block that, when evaluated, sets (as-
signs) or gets (retrieves) the value of the given field. If cFieldName

does not exist in the current work area, FIELDBLOCK() returns
NIL.

FIELDGETO

FIELDGET (nField) = ValueField

: is the ordinal position of the field in the
nkield
record structure for the current work area.

FIELDGET() returns the value of the specified field. If nField does
2695

not correspond to the position of any field in the current database
file, FIELDGET() returns NIL.

FIELDNAMEQ

FIELDNAME (nPosition) = cFieldName

is the position of a field in the database file
structure.

nPosition

FIELDNAME() returns the name of the specified field as a character
string. If nPosition does not correspond to an existing field in the

current database file or if no database file 1s open in the current work
area, FIELDNAME() returns a null string ("").

FIELDPOS()

Field position

FIELDPOS (cFieldName) = nkFieldPos

) 1s the name of a field in the current or spec-
cFieldName i P
1fied work area.

FIELDPOS() returns the position of the specified field within the
list of fields associated with the current or specified work area. If the

current work area has no field with the specified name, FIELDPOS()
returns zero.

2696

FIELDPUTQ

FIELDPUT (nField, expAssign) = ValueAssigned

nField is the ordinal position of the field in the

current database file.
1s the value to assign to the given field. The

expAssign data type of this expression must match the
data type of the designated field variable.

FIELDPUT() is a database function that assigns expAssign to the
field at ordinal position nField in the current work area. This func-
tion allows you to set the value of a field using its position within the
database file structure rather than its field name.

FIELDWBLOCKQ)

Field work area block

FIELDWBLOCK (cFieldName, nWorkArea) = bFieldWBlock

. is the name of the field specified as a char-
cFieldName :
acter string.
1s the work area number where the field re-
nWorkArea : .)
sides specified as a numeric value.

FIELDWBLOCK() returns a code block that, when evaluated, sets
(assigns) or gets (retrieves) the value of cFieldName in the work
area designated by nWorkArea. If cFieldName does not exist in the
specified work area, FIELDWBLOCK() returns NIL.

2697

FILEO

FILE (cFilespec) = IExists

is in the current default directory and path.
It is a standard file specification that can
include the wildcard characters * and ? as
well as a drive and path reference.

cFilespec

FILE() returns true (‘. T.’) if there is a match for any file matching
the cFilespec pattern; otherwise, it returns false (‘. F.’).

FLOCKO

File lock

FLOCK () = ISuccess

FLOCK() tries to lock the active alias and returns true (‘. T.’) if it
succeeds; otherwise, it returns false (‘.F.”).

FOPENOQO

File open

FOPEN (cFile, [nMode]) = nHandle

is the name of the file to open including the

cFile path if there is one.

2698

is the requested DOS open mode indicating
how the opened file is to be accessed. The
open mode is composed of the sum of two
elements: the Open mode and the Sharing
mode.

Open mode:

0 Open for reading (default)

nMode 1 Open for writing

2 Open for reading or writing

Sharing mode:

0 Compatibility mode (default)

16 Exclusive use

32 Prevent others from writing

48 Prevent others from reading

64 Allow others to read or write

FOPEN() returns the file handle of the opened file in the range of
zero to 65,535. If an error occurs, FOPEN() returns -1.

FOUNDOQO

FOUND () = ISuccess

FOUNDY() returns true (‘.T.’) if the last search command was suc-
cessful; otherwise, it returns false (‘. F.”).

FREADQ

File read

FREAD (nHandle, QcBufferVar, nBytes) =- nBytes

2699

1s the file handle obtained from FOPEN(),

FCREATE(), or predefined by DOS.
i1s the name of an existing and initialized

character variable used to store data read
from the specified file. The length of this
cBufferVar variable must be greater than or equal to
nBytes. cBufferVar must be passed by ref-
erence and, therefore, must be prefaced by

the pass-by-reference operator (@).
is the number of bytes to read into the

buffer.

nHandle

nBytes

FREAD() tries to read nBytes of the binary file nHandle inside
cBufferVar. 1t returns the number of bytes successfully read as an
integer numeric value. A return value less than nByfes or zero indi-
cates end of file or some other read error.

FREADSTRQO

File read string

FREADSTR (nHandle, nBytes) = cString

1s the file handle obtained from FOPEN(),
nHandle FCREATE(), or predefined by DOS.
nBytes is the number of bytes to read, beginning at
the current DOS file pointer position.

FREADSTR() returns a character string up to 65,535 (64K) bytes. A
null return value ("") indicates an error or end of file. FREADSTR()
1s a low-level file function that reads characters from an open binary

27700

file beginning with the current DOS file pointer position. Characters
are read up to nBytes or until a null character (CHR(0)) is encoun-
tered. All characters are read including control characters except for
CHR(0). The file pointer is then moved forward nBytes. If nBytes
is greater than the number of bytes from the pointer position to the
end of the file, the file pointer is positioned to the last byte in the file.

FRENAMEQ

File rename

FRENAME (cOldFile, cNewFile) = nSuccess

1s the name of the file to rename, including
the file extension. A drive letter and/or path

cOldFile name may also be included as part of the
filename.
is the new name of the file, including the
. file extension. A drive letter and/or path
cNewFile

name may also be included as part of the
name.

FRENAMEY() returns -1 if the operation fails and zero 1f it succeeds.

FSEEKQO

File seek

FSEEK (nHandle, nOffset, [nOrigin]) = nPosition

1s the file handle obtained from FOPEN(),

nHandle FCREATE(), or predefined by DOS.

2701

nOffset

is the number of bytes to move the
file pointer from the position defined by
nOrigin. It can be a positive or nega-
tive number. A positive number moves
the pointer forward, and a negative number
moves the pointer backward in the file.

nOrigin

defines the starting location of the file
pointer before FSEEK() is executed. The
default value is zero, representing the be-
ginning of file. If nOrigin is the end of
file, nOffset must be zero or negative.

nOrigin ==

Seek from beginning of file

nOrigin == 1

Seek from the current pointer position

nOrigin ==

Seek from end of file

FSEEK() returns the new position of the file pointer relative to the
beginning of file (position 0) as an integer numeric value. This value
is without regard to the original position of the file pointer. FSEEK()
i1s a low-level file function that moves the file pointer forward or
backward in an open binary file without actually reading the contents
of the specified file. The beginning position and offset are specified
as function arguments, and the new file position is returned.

FWRITEQ

File write

FWRITE (nHandle, cBuffer, [nBytes]) = nBytesWritten

nHandle

1s the file handle obtained from FOPEN(),
FCREATE(), or predefined by DOS.

2702

cBuffer

1s the character string to write to the speci-
fied file.

nBytes

indicates the number of bytes to write be-
ginning at the current file pointer position.
If omitted, the entire content of cBuffer is
written.

FWRITE() returns the number of bytes written as an integer numeric
value. If the value returned is equal to nByfes, the operation was
successful. If the return value is less than nBytes or zero, either the
disk is full or another error has occurred.

GETENVQ

Get environment

GETENV (cEnvironmentVariable)

= cString

cEnvironmentVariable

1s the name of the DOS environment vari-
able. When specifying this argument, you
can use any combination of upper and low-
ercase letters; GETENV() is not case- sen-
sitive.

GETENV() returns the contents of the specified DOS environment

variable as a character string. If the variable cannot be found,
GETENV() returns a null string ("").

2703

HARDCRQ

Hard carriage return

HARDCR (cString) = cConvertedString

is the character string or memo field to con-

cString .
vert.

HARDCR() is a memo function that replaces all soft carriage returns
(CHR(141)) with hard carriage returns (CHR(13)). It is used to dis-
play long character strings and memo fields containing soft carriage
returns with console commands.

HEADERQ

HEADER () = nBytes

HEADER() returns the number of bytes in the header of the current

database file as an integer numeric value. If no database file is in
use, HEADER() returns a zero (0).

12BINQ

Integer to binary

I12BIN (nlnteger) =- cBinarylnteger

1S an integer numeric value to convert.

nlnteger . gy
& Decimal digits are truncated.

27704

I2BIN() returns a two-byte character string containing a 16-bit bi-
nary integer.

IFO

[1] IF (ICondition, expTrue, expFalse) = Value

ICondition is a logical expression to be evaluated.

is the value, a condition-expression, of any
expTrue data type, returned if lCondition is true
(c.T.’).

is the value, of any date type, returned if
explalse [Condition is false (‘.F.’). This argument
need not be the same data type as expTrue.

IF() returns the evaluation of expTrue if ICondition evaluates to true
(‘. T.’) and expFalse if it evaluates to false (‘.F.’).

INDEXEXTQ)

Index extention

INDEXEXT () = cExtension

INDEXEXT() returns the default index file extension by determining
which database driver is currently linked.

2705

INDEXKEYQ

INDEXKEY (nOrder) = cKeyExp

is the ordinal position of the index in
the list of index files opened by the last
USE..INDEX or SET INDEX TO com-
mand for the current work area. A zero
value specifies the controlling index, with-
out regard to its actual position in the list.

nOrder

INDEXKEY () returns the key expression of the specified index as a
character string. If there is no corresponding index or if no database

file 1s open, INDEXKEY () returns a null string ("").
INDEXORDOQ

Index order

INDEXORD () = nOrder

INDEXORD() returns an integer numeric value. The value returned
is equal to the position of the controlling index in the list of open
indexes for the current work area. A value of zero indicates that there
i1s no controlling index and records are being accessed in natural
order. If no database file 1s open, INDEXORD() will also return a

Z€10.

2706

INKEY()

Input key

INKEY ([nSeconds]) = nInkeyCode

nSeconds

specifies the number of seconds INKEY()
waits for a keypress. You can specify the
value in increments as small as one-tenth
of a second. Specifying zero halts the pro-
gram until a key is pressed. If nSeconds is
omitted, INKEY () does not wait for a key-
press.

INKEY () returns an integer numeric value from -39 to 386, iden-
tifying the key extracted from the keyboard buffer. If the key-
board buffer i1s empty, INKEY () returns zero. INKEY () returns val-
ues for all ASCII characters, function, Alt+function, Ctrl+function,
Alt+letter, and Ctrl+letter key combinations.

nlnkeyCode value Key or key combination

5 [Up arrow], [Ctrl|+[E]
24 [Down arrow], [Ctrl]+[X]
19 [Left arrow], [Ctrl]+[S]

4 [Right arrow], [Ctrl]+[D]
1 | Home], [Ctrl]+[A]

6 [End], [Ctrl]+[F]

18 [PgUp], [Ctrl]+[R]

3 [PgDn], [Ctrl]+][C]

397 [Ctrl]+[Up arrow]
401 [Ctrl]+ Down arrow]

2707

nlnkeyCode value

Key or key combination

26 [Ctrl)+[Left arrow], [Ctrl|+[Z]
2 [Ctrl|+[Right arrow], [Ctrl |+[B]
29 [Ctrl]+| Home]

23 [Ctrl)+[End], [Ctri]+[W]

31 [Ctrl1+[PgUp], [Ctrl]+[Hyphen |
30 [Ctrl1+[PgDn], [Ctrl]+[]
408 [Alt |+[Up arrow]
416 [Alt |+[Down arrow |
411 [Alt |+[Left arrow]
413 [Alt |+[Right arrow |
407 [Alt |+ Home |
415 [Alt |+] End]
409 [Alt1+[PgUp |
417 [Alt]+[PgDn]

13 | Enter], [Ctrl]+[M]

32 [Space bar |

27 [Esc]

10 [Ctrl]+[Enter]

379 [Ctrl]+| Print Screen |

309 [Ctrl]+] 7]

284 [Alt |+[Enter]

387 [Alt|+[Equals]

257 [Alt |+ Esc]

422 Keypad [Alt]+[Enter]

399 Keypad [Ctrl]+[5]

405 Keypad [Ctrl]+[/]

406 Keypad [Ctrl]+[*]

398 Keypad [Ctrl]+[-]

400 Keypad [Ctrl]+[+]

27708

nlnkeyCode value

Key or key combination

5 Keypad [Alt]+[5]

420 Keypad [Alr]+[/]

311 Keypad [Alt]+[*]

330 Keypad [Alf]+[-]

334 Keypad [Alf]+[+]

22 [Ins], [Ctrl]+[V]

7 [Del], [Ctrl]+[G]

8 [Backspace |, [Ctrl |+ H |
9 [Tab], [Ctrl]+[1]

271 [Shift+[Tab]

402 [Ctrl]+[Ins]

403 [Ctrl]+[Del]

127 [Ctrl+[Backspace |

404 [Ctrl]+ Tab]

418 [Alt]+[Ins]

419 [Alt]+[Del]

270 [Alt |+[Backspace]

421 [Alt]+[Tab]

1 [Ctrl]+[A], [Home]

2 [Ctrl1+[B, [Ctrl|+[Right arrow |
3 [Ctrl|+[C], [PgDn], [Ctrl]+[ScrollLock |
4 [Ctrl]+[D], [Right arrow |
5 [Ctrl]+[E], [Up arrow]

6 [Ctrl)+[F], | End]

7 [Ctrl]+] G, [Del]

8 [Ctrl+[H], [Backspace |
9 [Ctrl]+[1I], [Tab]

10 [Ctrl]+][J]

11 [Ctrl]+ K]

2709

nlnkeyCode value

Key or key combination

12 [Ctrl]+[L]

13 [Ctrl]+| M], [Return]

14 [Ctrl]+[N]

15 [Ctrl]+] O]

16 [Ctrl]+[P]

17 [Ctrl]+[O]

18 [Ctrl]+[R], [PgUp]

19 [Ctrl+[S], [Left arrow]
20 [Ctrl]+][T]

21 [Ctrl]+[U]

22 [Ctrl]+[V], [Ins]

23 [Ctrl]+[W], [Ctrl]+[End]
24 [Ctrl)+[X], [Down arrow]
25 [Ctrl]+][Y]

26 [Ctrl+[Z], [Ctrl|+] Left arrow]
286 [Alt |+[A]

304 [Alt]+[B]

302 [Alt]+] C]

288 [Alt]+[D]

274 [Alt |+[E]

289 [Alt |+ F']

290 [Alt]+[G

291 [Alt]+ H]

279 [Alt]+][1]

292 [Alt]+[J]

293 [Alt |+ K]

294 [Alt]+[L]

306 [Alt]|+ M]

305 [Alt]+[N]

2710

nlnkeyCode value

Key or key combination

280 [Alt]+[O]
281 [Alt]+[P]
272 [Alt]+[O]
275 [Alt]+[R]
287 [Alt]+[S]
276 [Alt]+[T]
278 [Alt]+[U]
303 [Alt]+[V]
273 [Alt]+[W]
301 [Alt]+[X]
277 [Alt]+[Y]
300 [Alt]+[Z]
376 [Alt]+[1]
377 [Alt]+[2]
378 [Alt]+[3]
379 [Alt]+[4]
380 [Alt]+[5]
381 [Alt]+[6]
382 [Alt]+[7]
383 [Alt]+[8]
384 [Alt]+[9]
385 [Alt]+[0]
28 [F1], [Ctrl]+][Backslash]
-1 [F2]

2 [F3]

-3 [F4]

4 [F5]

-5 [F6]

-6 [F7]

2711

nlnkeyCode value

Key or key combination

-7 [F8]

-8 [F9]

-9 [F10]

-40 [F11]

41 [F12]

-20 [Ctrl]+[F1]
-21 [Ctrl]+[F2]
-22 [Ctrl]+[F4]
-23 [Ctrl]+[F3]
-24 [Ctrl]+[F5]
-25 [Ctrl]+[F6]
-26 [Ctrl+[F7]
=27 [Ctrl]+[F8]
-28 [Ctrl]+[F9]
-29 [Ctrl]+[F10]
-44 [Ctrl]+[F11]
-45 [Ctrl+[F12]
-30 [Alt]+[F1]
-31 [Alt]+[F2]
-32 [Alt]+[F3]
-33 [Alt|+[F4]
-34 [Alt]+[F5]
-35 [Alt]+[F6]
-36 [Alt|+[F7]
-37 [Alt]+[F8]
-38 [Alt]+[F9]
-39 [Alt]+[F10]
-46 [Alt]+[F11]
-47 [Alt]+[F12]

2712

nlnkeyCode value Key or key combination
-10 [Shift |+ F1]
-11 [Shift]+ F2]
-12 [Shift |+ F3]
13 [Shift |+ F4]
-14 [Shift [+ F5]
-15 [Shift 1+[F6]
-16 [Shift]+ F7]
-17 [Shift]+ F8]
-18 [Shift]+ F9]
-19 [Shift |+ F10]
42 [Shift 1+ F11]
43 [Shift |+[F12]

INTQO

Integer

INT (nExp) = nlInteger

1S a numeric expression to convert to an in-

nExp teger.

INT() is a numeric function that converts a numeric value to an in-
teger by truncating all digits to the right of the decimal point. INT()
1s useful in operations where the decimal portion of a number 1s not
needed.

2713

ISALPHAQ

ISALPHA (cString) =- lBoolean

cString 1s the character string to examine.

ISALPHAC() returns true (*.T.’) if the first character in ¢String is
alphabetic; otherwise, it returns false (‘. F.”).

ISCOLORQO

ISCOLOR () | ISCOLOUR () = [Boolean

ISCOLOR() returns true (‘. T.’) if there is a color graphics card in-
stalled; otherwise, it returns false (‘. F.”).

ISDIGITO

ISDIGIT (cString) =- lBoolean

cString 1s the character string to examine.

ISDIGIT() returns true (‘. T.’) if the first character of the character
string 1s a digit between zero and nine; otherwise, it returns false

(“.F.’).

2714

ISLOWERQ

ISLOWER (cString) =- lBoolean

cString 1s the character string to examine.

ISLOWER() returns true (‘. T.’) if the first character of the character
string is a lowercase letter; otherwise, it returns false (‘. F.”).

ISPRINTERQ

ISPRINTER () = IReady

ISPRINTER() returns true (‘. T.’) if ‘LPT1:’ is ready; otherwise, it
returns false (‘*.F.’).

ISUPPERQ

ISUPPER (cString) =- lBoolean

cString 1s the character string to examine.

ISUPPER() returns true (‘. T.’) if the first character is an uppercase
letter; otherwise, it returns false (‘. F.’).

L2BINQO

Long to binary

2715

L2BIN (nExp) = cBinarylnteger

1s the numeric value to convert. Decimal

nEx ..
P digits are truncated.

L2BIN() returns a four-byte character string formatted as a 32- bit
binary integer.

LASTKEYQ

LASTKEY () = nlInkeyCode

LASTKEY() is a keyboard function that reports the INKEY () value
of the last key fetched from the keyboard buffer by the INKEY()
function, or a wait state. LASTKEY () retains its current value until
another key is fetched from the keyboard buffer.

LASTRECQO

Last record

LASTREC () = nRecords

LASTREC() returns the number of physical records in the active
alias as an integer numeric value.

2716

LEFTO

LEFT (cString, nCount) = cSubString

. is a character string from which to extract
cString
characters.
nCount 1s the number of characters to extract.

LEFT() returns the leftmost nCount characters of ¢String as a char-
acter string. If nCount is negative or zero, LEFT() returns a null
string (""). If nCount 1s larger than the length of the character string,
LEFT() returns the entire string.

LENQ

Length

LEN (cString | aTlarget) = nCount

cString 1s the character string to count.
alarget is the array to count.

LEN() returns the length of a character string or the number of ele-
ments in an array as an integer numeric value.

LOGO

LOG (nExp) = nNaturallLog

2717

1s a numeric value greater than zero to con-

nEx . .
P vert to its natural logarithm.

LOG() returns the natural logarithm as a numeric value. If nExp is
less than or equal to zero, LOG() returns a numeric overflow (dis-
played as a row of asterisks).

LOWERQ

LOWER (cString) =- cLowerString

1s a character string to convert to lower-
case.

cString

LOWER() returns a copy of ¢String with all alphabetic characters
converted to lowercase.

LTRIMQO

Left trim

LTRIM (cString) = cTrimString

1s the character string to copy without lead-

cStrin .
& ing spaces.

LTRIM() returns a copy of ¢String with the leading spaces removed.

2718

LUPDATEQ

Last update

LUPDATE () = dModification

LUPDATE() returns the date of last change to the open database file
in the current work area.

MAXQO

MAX (nExpl, nExp2) = nLarger

MAX (dExpl, dExp2) = dLarger

nExpl, nExp2 are the numeric values to compare.
dExpl, dExp2 are the date values to compare.

MAX() returns the larger of the two arguments. The value returned
1s the same type as the arguments.

MAXCOLQO

Max column

MAXCOL () = nColumn

MAXCOL() returns the column number of the rightmost visible col-
umn for display purposes.

2719

MAXROWQ

MAXROW () = nRow

MAXROW () returns the row number of the bottommost visible row
for display purposes.

MEMOEDIT(Q

MEMOEDIT ([cString | ,
[nTop] , [nLeft],
[nBottom] , [nRight] ,
[lEdltMode] ,

[c serFunction] ,

[nLineLength | ,

[nTabSlze] ,

[nTextBufferRow | ,

[nTextBufferColumn | ,

[
[

nWmdowRow] ,
nWmdowColumn]) = cTextBuffer

i1s the character string or memo field to

copy to the MEMOEDIT() text buffer.
are window coordinates. The default coor-

dinates are 0, 0, MAXROW(), and MAX-

cString

nTop, nLeft, nBottom,

nRight COLO).
determines whether the text buffer can be
IEditMode edited or merely displayed. If not speci-

fied, the default value is true (. T.’).

2720

is the name of a user-defined function that
UserF) executes when the user presses a key not
cUserltunction recognized by MEMOEDIT() and when no

keys are pending in the keyboard buffer.
determines the length of lines displayed

in the MEMOEDIT() window. If a line
is greater than nLineLength, it is word
wrapped to the next line in the MEM-
OEDIT() window. The default line length
1s (nRight - nLeft).

determines the size of a tab character to in-
nTabSize sert when the user presses Tab. The default

1s four.
define the display position of the cursor

within the text buffer when MEMOEDIT()
nTextBufferRow, is invoked. nTextBufferRow begins with
nTextBufferColumn one and nTextBufferColumn begins with
zero. Default is the beginning of MEM-

OEDIT() window.
define the initial position of the cursor

within the MEMOEDIT() window. Row
nWindowRow, and column positions begin with zero. If
nWindowColumn these arguments are not specified, the ini-
tial window position is row zero and the
current cursor column position.

nLineLength

MEMOEDIT() 1s a user interface and general purpose text editing
function that edits memo fields and long character strings. Editing
occurs within a specified window region placed anywhere on the

screen.
[Uparrow |/[Ctrl |+E Move up one line

2721

[Dnarrow /| Ctrl]+X

Move down one line

[Leftarrow |/[Ctrl]+S

Move left one character

[Rightarrow |/[Ctrl]+D

Move right one character

[Ctrl]-
[Leftarrow /[Ctrl]+A

Move left one word

[Ctrl]-
[Rightarrow |/[Ctrl |+F

Move right one word

[Home |

Move to beginning of current line

[End] Move to end of current line

[Ctrl]+[Home | Move to beginning of current window
[Ctrl]+| End] Move to end of current window
[PgUp] Move to previous edit window
[PgDn] Move to next edit window
[Ctrl]+[PgUp] Move to beginning of memo
[Ctrl]+[PgDn] Move to end of memo

[Return | Move to beginning of next line

[Delete | Delete character at cursor

[Backspace] Delete character to left of cursor
[Tab | Insert tab character or spaces
Printable characters Insert character

[Ctrl]+Y Delete the current line

[Ctrl]+T Delete word right

[Ctrl]+B Reform paragraph

[Ctrl]+V/] Ins | Toggle insert mode

[Ctrl]+W Finish editing with save

[Esc] Abort edit and return original

2722

MEMOLINEQ

MEMOLINE (cString,
[nLineLength | ,

aneNumber] ,

[
[nTabStze] ,
[[Wrap]) = cLine

1s the memo field or character string from

which to extract a line of text. ’
specifies the number of characters per line

nLineLength and can be between four and 254 . If not

specified, the default line length 1s 79.
is the line number to extract. If not speci-

cString

nLineNumber fied, the default value 1s one.
. defines the tab size. If not specified, the
nTabSize :
default value is four.
toggles word wrap on and off. Specifying
IWrap true (*.T.’) toggles word wrap on; false

(‘.F.’) toggles it off. If not specified, the
default value is true (‘. T.’).

MEMOLINEY() returns the line of text specified by nLineNumber in
cString as a character string. If the line has fewer characters than the
indicated length, the return value 1s padded with blanks. If the line
number is greater than the total number of lines in ¢String, MEM-
OLINE() returns a null string (""). If IWrap is true (‘. T.’) and the
indicated line length breaks the line in the middle of a word, that
word is not included as part of the return value but shows up at the
beginning of the next line extracted with MEMOLINE(). If IWrap is
false (‘.F.’), MEMOLINE)() returns only the number of characters

2723

specified by the line length. The next line extracted by MEMO-
LINE() begins with the character following the next hard carriage
return, and all intervening characters are not processed.

MEMOREADQ)

MEMOREAD (cFile) = cString

1s the name of the file to read from disk. It
cFile must include an extension if there i1s one,
and can optionally include a path.

MEMOREAD() returns the contents of a text file as a character
string.

MEMORYQ

MEMORY (nExp) = nKbytes

1s a numeric value that determines the type

nExp of value MEMORY () returns.

MEMORY() returns an integer numeric value representing the

amount of memory available.
Estimated total space available for charac-

MEMORY (0)
ter values . .
MEMORY(1) Largest contiguous block available for
character values
MEMORY (2) Area available for RUN commands

2724

MEMOTRANOQO

Memo translate

MEMOTRAN (cString ,
| cReplaceHardCR | ,
[cReplaceSoftCR|) = cNewString

is the character string or memo field to

cString

search. .

is the character to replace a hard carriage
cReplaceHardCR return/linefeed pair with. If not specified,

the default value 1s a semicolon (;).
is the character to replace a soft carriage

cReplaceSoftCR return/linefeed pair with. If not specified,
the default value is a space.

MEMOTRAN() returns a copy of ¢String with the specified carriage
return/linefeed pairs replaced.

MEMOWRITQ

Memo write

MEMOWRIT (cFile, cString) = ISuccess

is the name of the target disk file includ-
cFile ing the file extension and optional path and

drive designator.
is the character string or memo field to

write to cFile.

cString

2725

MEMOWRIT() is a memo function that writes a character string or
memo field to a disk file. If a path is not specified, MEMOWRIT()
writes cFile to the current DOS directory and not the current DE-
FAULT directory. If cFile already exists, it 1s overwritten. MEM-
OWRIT() returns true (‘. T.’) if the writing operation is successful;
otherwise, it returns false (‘*.F.”).

MEMVARBLOCKQ)

MEMVARBLOCK (cMemvarName) — bMemvarBlock

is the name of the variable referred to by
cMemvarName the set-get block, specified as a character
string.

MEMVARBLOCK() returns a code block that when evaluated sets
(assigns) or gets (retrieves) the value of the given memory variable.
If cMemvarName does not exist, MEMVARBLOCK() returns NIL.

MINO

MIN (nExpl, nExp2) = nSmaller

MIN (dExpl, dExp2) = dSmaller

nExpl, nExp2 are the numeric values to compare.
dExpl, dExp2 are the date values to compare.

MIN() returns the smaller of the two arguments. The value returned
2726

is the same data type as the arguments.
MLCOUNTQ

Memo line count

MLCOUNT (cString, [nLineLength],
[nTabSize] , [lWrap]) = nLines

is the character string or memo field to

count. .
specifies the number of characters per line

nLineLength and can range from four to 254 . If not

specified, the default line length 1s 79.
defines the tab size. If not specified, the

default value is four.
toggles word wrap on and off. Specifying

true (*.T.’) toggles word wrap on; false
(‘.F.’) toggles it off. If not specified, the
default value is true (‘. T.’).

cString

nTabSize

IWrap

MLCOUNT() returns the number of lines in ¢String depending on
the nLineLength, the nTabSize, and whether word wrapping is on
or off.

MLCTOPOSO

Memo line column to position

MLCTOPOS (cText, nWidth, nLine,
nCol, [nTabSize] , [lWrap]) = nPosition

27727

cText is the text string to scan.

nWidth is the line length formatting width.
nLine is the line number counting from 1.
nCol 1s the column number counting from 0.

. 1s the number of columns between tab
nlabSize stops. If not specified, the default is 4.
IWrap is the word wrap flag. If not specified, the

default is true (‘. T.").

MLCTOPOS() returns the byte position within c¢7ext counting from
1.

MLPOSQ

Memo line position

MLPOS (cString, nLineLength,
nLine, [nTabSize] , [lWrap]) = nPosition

cString is a character string or memo field.
nLineLength specifies the number of characters per line.
nLine specifies the line number.

nTabSize defines the tab size. The default is four.

toggles word wrap on and off. Specify-
ing true (‘. T.’) toggles word wrap on, and
false (‘.F.’) toggles it off. The default is
true (‘. T.’).

IWrap

MLPOS() returns the character position of nLine in cString as an
integer numeric value. If nLine is greater than the number of lines
in ¢String, MLPOS() returns the length of cString.

2728

MONTHQ

MONTH (dDate) = nMonth

dDate 1s the date value to convert.

MONTHY() returns an integer numeric value in the range of zero to
12. Specifying a null date (CTOD("")) returns zero.

MPOSTOLCO

Memo position to line column

MPOSTOLC (cText, nWidth, nPos,
[nTabSize] , [lWrap]) = aLineColumn

cText 1s a text string.
nWidth is the length of the formatted line.
nPos is the byte position within text counting
from one.
TabSi is the number of columns between tab
nlaborze stops. If not specified, the default is four.
IWrap is the word wrap flag. If not specified, the

default is true (‘. T.’).

MPOSTOLC() returns an array containing the line and the column
values for the specified byte position, nPos. MPOSTOLC() 1s a
memo function that determines the formatted line and column corre-
sponding to a particular byte position within cText. Note that the line
number returned is one-relative, the column number 1s zero-relative.
This is compatible with MEMOEDIT(). nPos is one-relative, com-

2729

patible with AT(), RAT(), and other string functions.

NETERRQO

Net error

NETERR ([lNewError]) = [Error

INewError

if specified sets the value returned
by NETERR() to the specified status.
INewError can be either true (‘. T.’) or
false (‘.F.’). Setting NETERR() to a
specified value allows the runtime error
handler to control the way certain file
errors are handled.

NETERR() returns true (‘. T.”) if a USE or APPEND BLANK fails.
The 1nitial value of NETERR() 1s false (‘. F.’). If the current process
1s not running under a network operating system, NETERR() always

returns false (‘.F.”).

NETNAMEQ

NETNAME ()

= cWorkstationName

NETNAME)() returns the workstation identification as a character
string up to 15 characters in length. If the workstation identification
was never set or the application is not operating under the IBM PC
Network, it returns a null string ("").

27730

NEXTKEYQ

NEXTKEY () = nlInkeyCode

NEXTKEY () returns an integer numeric value ranging from -39 to
386. If the keyboard buffer 1s empty, NEXTKEY() returns zero.
If SET TYPEAHEAD is zero, NEXTKEY() always returns zero.
NEXTKEY() is like the INKEY () function, but differs in one fun-
damental respect. INKEY () removes the pending key from the key-
board buffer and updates LASTKEY() with the value of the key.
NEXTKEY(), by contrast, reads, but does not remove the key from
the keyboard buffer and does not update LASTKEY ().

NOSNOWQ

NOSNOW (lToggle) = NIL

is a logical value that toggles the current
state of snow suppression. A value of true
[Toggle (‘.T.’) enables the snow suppression on,
while a value of false (‘. F.”) disables snow
suppression.

NOSNOW() 1s used to suppress snow on old CGA monitors.
ORDBAGEXT()

ORDBAGEXT () = cBagExt

2731

ORDBAGEXT() returns a character expression that is the default Or-
der Bag extension of the current work area. cBagExt is determined
by the RDD active in the current work area.

ORDBAGNAMEQ

ORDBAGNAME (nOrder | cOrderName) = cOrderBagName

is an integer that identifies the position in
nOrder the Order List of the target Order whose

Order Bag name is sought.
is a character string that represents the

cOrderName name of the target Order whose Order Bag
name is sought.

ORDBAGNAME)() returns a character string, the Order Bag name
of the specific Order.

ORDCREATEQ)

ORDCREATE (cOrderBagName , [cOrderName | , cExpKey, [bExpKey],
[lUnique]) = NIL

1s the name of a disk file containing one or

more Orders.
cOrderName 1s the name of the Order to be created.
is an expression that returns the key value

to place in the Order for each record in the
cExpKey current work area. The maximum length of
the index key expression is determined by
the database driver.

2732

cOrderBagName

1s a code block that evaluates to a key value
bExpKey that is placed in the Order for each record

in the current work area._ _
specifies whether a unique Order is to

lUnique be created. Default is the current global
_SET_UNIQUE setting.

ORDCREATE() 1s an Order management function that creates an
Order in the current work area. It works like DBCREATEINDEX()

except that it lets you create Orders in RDDs that recognize multiple
Order Bags.

ORDDESTROY(

ORDDESTROY (cOrderName [, cOrderBagName]) = NIL

1s the name of the Order to be removed
cOrderName :

from the current or specified work area.
cOrderBagName is the name of a disk file containing one or

more Orders.

ORDDESTROY () is an Order management function that removes a
specified Order from multiple-Order Bags. ORDDESTROY () 1s not
supported for DBFNDX and DBFNTX.

ORDFORQ

ORDFOR (cOrderName | nOrder [, cOrderBagName]) = cForExp

2733

cOrderName

is the name of the target Order, whose
cForExp is sought.

nOrder

1s an integer that identifies the position in
the Order List of the target Order whose
cForExp is sought.

cOrderBagName

1s the name of an Order Bag containing one
or more Orders.

ORDFOR() returns a character expression, cForExp, that represents
the FOR condition of the specified Order. If the Order was not cre-
ated using the FOR clause the return value will be an empty string
(""). If the database driver does not support the FOR condition, it

may either return an empty string (

nn

) or raise an "unsupported func-

tion" error, depending on the driver.

ORDKEY()

ORDKEY (cOrderName | nOrder [, cOrderBagName]) = cExpKey

cOrderName

1s the name of an Order, a logical ordering
of a database.

nOrder

1s an integer that identifies the position in
the Order List of the target Order whose
cExpKey is sought.

cOrderBagName

1s the name of a disk file containing one or
more Orders.

ORDKEY() 1s an Order management function that returns a charac-
ter expression, cExpKey, that represents the key expression of the

specified Order.

27734

ORDLISTADD()

ORDLISTADD (cOrderBagName [, cOrderName]) = NIL

cOrderBagName

is the name of a disk file containing one or
more Orders.

cOrderName

the name of the specific Order from the Or-
der Bag to be added to the Order List of the
current work area. If you do not specify
cOrderName, all orders in the Order Bag
are added to the Order List of the current
work area.

ORDLISTADD() is an Order management function that adds the
contents of an Order Bag , or a single Order in an Order Bag, to
the Order List. Any Orders already associated with the work area
continue to be active. If the newly opened Order Bag contains the
only Order associated with the work area, it becomes the controlling
Order; otherwise, the controlling Order remains unchanged.

ORDLISTCLEARQ

ORDLISTCLEAR ()

ORDLISTCLEARC() 1s an Order management function that removes
all Orders from the Order List for the current work area.

2735

ORDLISTREBUILDQ

ORDLISTREBUILD () = NIL

ORDLISTREBUILD() 1s an Order management function that re-
builds all the orders in the current Order List.

ORDNAMEQ

ORDNAME (nOrder [, cOrderBagName]) = cOrderName

1s an integer that identifies the position in
nOrder the Order List of the target Order whose

database name is sought.
1s the name of a disk file containing one or
more Orders.

cOrderBagName

ORDNAMEY() returns the name of the specified Order in the current

Order List or the specified Order Bag if opened in the Current Order
list.

ORDNUMBERQ

ORDNUMBER (cOrderName [, cOrderBagName]) =- nOrderNo

the name of the specific Order whose posi-
cOrderName tion in the Order List is sought.
cOrderBagName 1s the name of a disk file containing one or
more Orders.

2736

ORDNUMBER() returns nOrderNo, an integer that represents the
position of the specified Order in the Order List.

ORDSETFOCUSO

ORDSETFOCUS ([cOrderName | nOrder] [,cOrderBagName])

= cPrevOrderNamelnFocus

OrderN. 1s the name of the selected Order, a logical
cUraerivame ordering of a database.
1s a number representing the position in the
nOrder Order List of the selected Order.
cOrderBagName is the name of a disk file containing one or
more Orders.

ORDSETFOCUS() 1s an Order management function that returns
the Order Name of the previous controlling Order and optionally
sets the focus to an new Order.

OS0O

0S () = cOsName

OS() returns the operating system name as a character string.

OUTERRQ

Output error

OUTERR (exp_list) = NIL

2737

is a list of values to display and can consist
exp_list of any combination of data types including
memo.

OUTERR() is identical to OUTSTD() except that it writes to the
standard error device rather than the standard output device. Output
sent to the standard error device bypasses the console and output
devices as well as any DOS redirection. It 1s typically used to log
error messages in a manner that will not interfere with the standard
screen or printer output.

OUTSTDO

Output standard

OUTSTD (exp_list) = NIL

1s a list of values to display and can consist
exp_list of any combination of data types including
memo.

OUTSTD() is a simple output function similar to QOUT(), except
that it writes to the STDOUT device (instead of to the console output
stream).

PAD?0

PADL (exp, nLength, [cFillChar]) = cPaddedString

2738

PADC (exp, nLength, |[cFillChar]|) = cPaddedString

PADR (exp, nlLength, [cFillChar]) = cPaddedString

is a character, numeric, or date value to pad

exp .
with a fill character. _
nLength 18 the length of the character string to re-
urn.
FillCh 1s the character to pad exp with. If not
critnar specified, the default is a space character.

PADC(), PADL(), and PADR() are character functions that pad char-
acter, date, and numeric values with a fill character to create a new
character string of a specified length. PADC() centers exp within
nLength adding fill characters to the left and right sides; PADL()
adds fill characters on the left side; and PADR() adds fill characters
on the right side.

PCOLO

Printed column

PCOL () = nColumn

PCOL() returns an integer numeric value representing the last
printed column position, plus one. The beginning column position
1S Zero.

27739

PROWQO

Printed row

PROW () = nRow

PROW() returns an integer numeric value that represents the number
of the current line sent to the printer. The beginning row position 1s
Zero.

QOUTO

QOUT ([exp_list]) = NIL

QQOUT ([exp_list]) = NIL

1s a comma-separated list of expressions
(of any data type other than array or block)
to display to the console. If no argument is
exp_list specified and QOUTY() is specified, a car-
riage return/linefeed pair is displayed. If
QQOUTY() is specified without arguments,
nothing displays.

QOUT() and QQOUT() are console functions. They display the re-
sults of one or more expressions to the console. QOUT() outputs
carriage return and linefeed characters before displaying the results

of exp_list. QQOUT() displays the results of exp_list at the current
ROW() and COL() position. When QOUT() and QQOUT() display

27740

to the console, ROW() and COL() are updated.

RATO

Right at

RAT (cSearch, cTarget)

= nPosition

cSearch

is the character string to locate.

cTarget

is the character string to search.

RAT() returns the position of cSearch within cTarget as an integer
numeric value, starting the search from the right. If c¢Search is not

found, RAT() returns zero.

RDDLISTO

RDDLIST ([nRDDType|) = aRDDList

nRDDType

is an integer that represents the type of the
RDD you wish to list.

nRDDType = 1 Full RDD implementation
nRDDType = 2 Import/Export only driver.

RDDLIST() returns a one-dimensional array of the RDD names reg-
i1stered with the application as nRDDType.

2741

RDDNAMEQ

RDDNAME () = cRDDName

RDDNAME() returns a character string, cRDDName, the registered
name of the active RDD in the current or specified work area.

RDDSETDEFAULT()

RDDSETDEFAULT ([cNewDefaultRDD]) = cPreviousDefaultRDD

cNewDefaultRDD

1s a character string, the name of the RDD
that 1s to be made the new default RDD in
the application.

RDDSETDEFAULT() is an RDD function that sets or returns
the name of the previous default RDD driver and, optionally,
sets the current driver to the new RDD driver specified by

cNewDefaultRDD .

READINSERT()

READINSERT ([lToggle]) = ICurrentMode

[Toggle

toggles the insert mode on or off. True
(‘. T.’) turns insert on, while false (‘*.F.’)
turns insert off. The default is false (‘. F.’)
or the last user-selected mode in READ or
MEMOEDIT().

27742

READINSERT() returns the current insert mode state as a logical
value.

READMODALQ

READMODAL (aGetList) = NIL

1s an array containing a list of Get objects

aGetList :
to edit.

READMODALY() is like the READ command, but takes a GetList ar-
ray as an argument and does not reinitialize the GetList array when
it terminates. The GET system is implemented using a public ar-
ray called GetList. Each time an @..GET command executes, it
creates a Get object and adds to the currently visible GetList array.
The standard READ command is preprocessed into a call to READ-
MODAL() using the GetList array as its argument.

READVARQ

READVAR () = cVarName

READVAR() returns the name of the variable associated with the
current Get object or the variable being assigned by the current
MENU TO command as an uppercase character string.

2743

RECNOQO

Record number

RECNO () = nRecord

RECNO() returns the current record number as an integer numeric
value. If the work area contains a database file with zero records,
RECNO() returns one, BOF() and EOF() both return true (‘. T.”),
and LASTREC() returns zero. If the record pointer is moved past
the last record, RECNO() returns LASTREC() + 1 and EOF() returns
true (‘. T.’). If an attempt is made to move before the first record,
RECNO() returns the record number of the first logical record in the
database file and BOF() returns true (‘. T.’). If no database file is
open, RECNO() will return a zero.

RECSIZEQ

Record size

RECSIZE () = nBytes

RECSIZE() returns, as a numeric value, the record length, in bytes,
of the database file open in the current work area. RECSIZE() re-
turns zero if no database file is open.

REPLICATEQ

REPLICATE (cString, nCount) = cRepeatedString

27744

cString 1s the character string to repeat.
nCount 1s the number of times to repeat cString.

REPLICATE() returns a character string. Specifying a zero as the
nCount argument returns a null string ("").

RESTSCREENQ

Restore screen

RESTSCREEN ([nTop], [nLeft],
[nBottom] , [nRight] , cScreen) = NIL

define the coordinates of the screen in-
formation contained in cScreen. If
nTop, nLeft, nBottom, | the cScreen was saved without coordi-
nRight nates to preserve the entire screen, no

screen coordinates are necessary with

RESTSCREEN().
1s a character string containing the saved

screen region.

cScreen

RESTSCREEN() is a screen function that redisplays a screen region
saved with SAVESCREEN(). The target screen location may be the
same as or different than the original location when the screen region
was saved.

2745

RIGHTQ

RIGHT (cString, nCount) = cSubString

. is the character string from which to extract
cString
characters.
nCount 1s the number of characters to extract.

RIGHT() returns the rightmost nCount characters of c¢String. If
nCount 1s zero, RIGHT() returns a null string (""). If nCount is
negative or larger than the length of the character string, RIGHT()
returns cString.

RLOCKQ

Record lock

RLOCK () = ISuccess

RLOCK() 1s a network function that locks the current record, pre-
venting other users from updating the record until the lock is re-
leased. RLOCK() provides a shared lock, allowing other users read-
only access to the locked record while allowing only the current user
to modify it. A record lock remains until another record 1s locked,
an UNLOCK 1is executed, the current database file is closed, or an
FLOCK() 1s obtained on the current database file.

2746

ROUNDOQO

ROUND (rnNumber, nDecimals) = nRounded

nNumber 1s the numeric value to round.
defines the number of decimal places to
nDecimals retain. Specifying a negative nDecimals
value rounds whole number digits.

ROUND() is a numeric function that rounds nNumber to the number
of places specified by nDecimals. Specifying a zero or negative
value for nDecimals allows rounding of whole numbers. A negative
nDecimals indicates the number of digits to the left of the decimal
point to round. Digits between five to nine, inclusive, are rounded
up. Digits below five are rounded down.

ROW(Q)

ROW () = nRow

ROW() returns the cursor row position as an integer numeric value.
The range of the return value is zero to MAXROW().

RTRIMQ

Right trim

[R] TRIM (c¢String) = cTrimString

27747

is the character string to copy without trail-

cString ing spaces.

RTRIM() returns a copy of ¢String with the trailing spaces removed.
If ¢String 1s a null string ("") or all spaces, RTRIM() returns a null
string ("").

SAVESCREEN(Q)

SAVESCREEN ([nTop], [nLeft],
[nBottom] , [nRight]) = cScreen

nTop, nLeft, nBottom, | define the coordinates of the screen region
nRight to save. Default is the entire screen.

SAVESCREEN() returns the specified screen region as a character
string.

SCROLLQ)

SCROLL ([nTop] , [nLeft] ,
[nBottom] , [nRight] , [nVert] [nHoriz]) = NIL

nTop, nLeft, nBottom, nRight define the scroll region coordinates.
defines the number of rows to scroll, verti-
cally. A positive value scrolls up the spec-
ified number of rows. A negative value
scrolls down the specified number of rows.
A value of zero disables vertical scrolling.
If nVert is not specified, zero is assumed.

2748

nVert

defines the number of rows to scroll hor-
izontally. A positive value scrolls left the
specified number of columns. A negative
value scrolls right the specified number of
columns. A value of zero disables hori-
zontal scrolling. If nHoriz is not speci-
fied, zero is assumed. If you supply neither
nVert or nHoriz parameters to SCROLL(),
the area specified by the first four parame-
ters will be blanked.

nHoriz

SCROLL() is a screen function that scrolls a screen region up or
down a specified number of rows. When a screen scrolls up, the
first line of the region is erased, all other lines are moved up, and a
blank line 1s displayed in the current standard color on the bottom
line of the specified region. If the region scrolls down, the operation
is reversed. If the screen region is scrolled more than one line, this
process 1s repeated.

SECONDSQO

SECONDS () = nSeconds

SECONDS() returns the system time as a numeric value in the form
seconds.hundredths. The numeric value returned is the number of
seconds elapsed since midnight, and 1s based on a twenty-four hour
clock in a range from zero to 86399.

2749

SELECTO

SELECT ([cAlias]) = nWorkArea

cAlias

1s the target work area alias name.

SELECT() returns the work area of the specified alias as a integer

numeric value.

SETO

SET (nSpecifier,

[expNewSetting | , [lOpenMode |)
= CurrentSetting

nSpecifier

1s a numeric value that identifies the setting
to be inspected or changed.

expNewSetting

1s an optional argument that specifies a
new value for the nSpecifier. The type of
expNewSetting depends on nSpecifier.

lOpenMode

is a logical value that indicates whether or
not files are opened for some settings. A
value of false (‘. F.’) means the file should
be truncated. A value of true (‘. T.’) means
the file should be opened in append mode.
In either case, if the file does not exist, it
is created. If this argument is not specified,
the default is append mode.

SET() returns the current value of the specified setting.

Inside nB, the function SET() is not so easy to use as inside the Clip-

2750

per environment. This because nB cannot support manifest constants
and a numeric specifier nSpecifier is not easy to manage. Instead of
SET() you can use SETVERB().

SETBLINKQ

SETBLINK ([lToggle]) = ICurrentSetting

changes the meaning of the asterisk (*)
character when it is encountered in a SET-
COLOR() string. Specifying true (*.T.’)
sets character blinking on and false (*.F.")
sets background intensity. The default is
true (‘. T.’).

[Toggle

SETBLINK() returns the current setting as a logical value.
SETCANCELQ

SETCANCEL ([IToggle]) = ICurrentSetting

changes the availability of Alt-C and Ctrl-
Break as termination keys. Specifying true
[Toggle (‘. T.’) allows either of these keys to ter-
minate an application and false (‘. ¥.’) dis-
ables both keys. The defaultis true (‘. T.”).

SETCANCEL() returns the current setting as a logical value.

2751

SETCOLORQO

SETCOLOR ([cColorString |) = cColorString

is a character string containing a list
cColorString of color attribute settings for subsequent
screen painting.

SETCURSORQ)

SETCURSOR ([nCursorShape]) = nCurrentSetting

1s a number indicating the shape of the cur-

SOT.
nCursorShape == 0 None
nCursorShape nCursorShape == 1 Underline

nCursorShape == 2 Lower half block
nCursorShape == 3 Full block
nCursorShape == 4 Upper half block

SETCURSOR() returns the current cursor shape as a numeric value.

SETKEYQO

SETKEY (nlnkeyCode, [bAction]) = bCurrentAction

is the INKEY () value of the key to be asso-

nilnkeyCode ciated or queried.

27752

specifies a code block that is automati-
bAction cally executed whenever the specified key
is pressed during a wait state.

SETKEY () returns the action block currently associated with the
specified key, or NIL if the specified key 1s not currently associated
with a block.

SETMODEQ

SETMODE (nRows, nCols) = ISuccess

is the number of rows in the desired display
nRows

mode.

1s the number of columns in the desired dis-
nCols

play mode.

SETMODE() is an environment function that attempts to change
the mode of the display hardware to match the number of rows and
columns specified. The change in screen size is reflected in the val-
ues returned by MAXROW () and MAXCOLJ().

SETPOSO

Set position

SETPOS (nRow, nCol) = NIL

2753

define the new screen position of the cur-

nRow, nCol sor. These values may range from 0, O to
MAXROW(), MAXCOL().

SETPOS() is an environment function that moves the cursor to a
new position on the screen. After the cursor is positioned, ROW()
and COL() are updated accordingly.

SETPRCQ)

Set printer row column

SETPRC (nRow, nCol) = NIL

nRow 1s the new PROW() value.
nCol 1s the new PCOL.() value.

SETPRC() is a printer function that sends control codes to the printer
without changing the tracking of the printhead position.

SOUNDEXQO

SOUNDEX (cString) = cSoundexString

cString 1s the character string to convert.

SOUNDEX() returns a four-digit character string in the form A999.

2754

SPACEQ

SPACE (nCount) = cSpaces

nCount is the number of spaces to return.

SPACE() returns a character string. If nCount is zero, SPACE()
returns a null string ("").

SQRTO

SQORT (nNumber) = nRoot

1s a positive number to take the square root

nNumber
of.

SQRT() returns a numeric value calculated to double precision. The
number of decimal places displayed is determined solely by SET
DECIMALS regardless of SET FIXED. A negative nNumber re-

turns zero.
STRO

String

STR (nNumber, [nLength] , [nDecimals]) = cNumber

is the numeric expression to convert to a
character string.

nNumber

2755

is the length of the character string to
nLength return, including decimal digits, decimal
point, and sign.
nDecimals is the number of decimal places to return.

STR() returns nNumber formatted as a character string.

STRTRANQ

STRTRAN (cString, cSearch,
[cReplace] , [nStart], [nCount]) = cNewString

is the character string or memo field to

search.
cSearch is the sequence of characters to locate.

is the sequence of characters with which
to replace cSearch. If this argument is
cReplace not specified, the specified instances of the
search argument are replaced with a null

string ("").
is the first occurrence that will be replaced.

nStart If this argument is omitted, the default is

one.
1s the number of occurrences to replace. If

nCount this argument is not specified, the default
is all.

cString

STRTRAN() returns a new character string with the specified in-
stances of cSearch replaced with cReplace.

2756

STUFFQ

STUFF (cString, nStart,
nDelete, clInsert) = cNewString

cString is the target character string into which

characters are inserted and deleted.

is the starting position in the target string
nStart : . :

where the insertion/deletion occurs.
nDelete is the number of characters to delete.
clnsert is the string to insert.

STUFF() returns a copy of c¢String with the specified characters
deleted and with cInsert inserted.

SUBSTRQ

Sub string

SUBSTR (cString, nStart, [nCount]) = cSubstring

is the character string from which to extract

a substring.
is the starting position in c¢String. If nStart

1s positive, it is relative to the leftmost char-
nStart acter in ¢String. If nStart is negative, it
is relative to the rightmost character in the
cString.

cString

27757

nCount

is the number of characters to extract. If
omitted, the substring begins at nStart and
continues to the end of the string. If
nCount is greater than the number of char-
acters from nStart to the end of cString,
the extra is ignored.

SUBSTR() is a character function that extracts a substring from an-
other character string or memo field.

TIMEQ

TIME () = cTimeString

TIME() returns the system time as a character string in the form
hh:mm:ss. hh 1s hours in 24-hour format, mm i1s minutes, and ss is

seconds.

TIME() 1s a time function that displays the system time on the screen

or prints it on a report.

TONEQ

TONE (nFrequency, nDuration)

= NIL

1s a positive numeric value indicating the

nFrequency frequency of the tone to sound.
1s a positive numeric value indicating the
duration of the tone measured in incre-
nDuration ments of 1/18 of a second. For example,

an nDuration value of 18 represents one
secondsg

For both arguments, noninteger values are truncated (not rounded)
to their integer portion.

TRANSFORMOQ

TRANSFORM (exp, cSayPicture) =- cFormatString

is the value to format. This expression can
exp be any valid data type except array, code

block, and NIL.
i1s a string of picture and template char-

cSayPicture acters that describes the format of the re-
turned haracter string.

TRANSFORM() converts exp to a formatted character string as de-
fined by cSayPicture.

TYPEQ

TYPE (cExp) = cType

1s a character expression whose type is to
be determined. cExp can be a field, with or
without the alias, a private or public vari-
able, or an expression of any type.

cExp

TYPE() returns one of the following characters:

A Array
B Block
C Character

2759

Date

Logical

Memo

Numeric

Object

NIL, local, or static
Error syntactical

clclolz|z|t|o

T

=

Error indeterminate

TYPE() 1s a system function that returns the type of the specified

expression. TYPE() is like VALTYPE() but uses the macro operator
(&) to determine the type of the argument. VALTYPE(), by contrast,
evaluates an expression and determines the data type of the return
value.

UPDATEDQ)

UPDATED () = [Change

UPDATED() returns true (‘. T.’) if data in a GET 1s added or
changed; otherwise, it returns false (‘. F.”).

UPPERQ

UPPER (cString) = cUpperString

cString is the character string to convert.

UPPER() returns a copy of ¢String with all alphabetical characters
27760

converted to uppercase. All other characters remain the same as in
the original string.

USEDQO

USED () = IDbfOpen

USED() returns true (‘.T.’) if there 1s a database file in USE 1n the
current work area; otherwise, it returns false (*.F.”).

VALO
Value

VAL (cNumber) = nNumber

cNumber is the character expression to convert.

VAL() is a character conversion function that converts a character
string containing numeric digits to a numeric value. When VAL()
is executed, it evaluates cNumber until a second decimal point, the
first non-numeric character, or the end of the expression is encoun-
tered.

VALTYPEQ

Value type

VALTYPE (exp) = cType

2761

exp

1s an expression of any type.

VALTYPE() returns a single character representing the data type re-
turned by exp. VALTYPE() returns one of the following characters:

Array

Block

Character

Date

Logical

Memo

Numeric

Object

clo|z z|c|o|a|w »

NIL

VALTYPE() is a system function that takes a single argument, eval-
uates 1it, and returns a one character string describing the data type
of the return value.

YEARQ

YEAR (dDate)

= nYear

dDate

1s the date value to convert.

YEAR() returns the year of the specified date value including the
century digits as a four-digit numeric value. The value returned is
not affected by the current DATE or CENTURY format. Specifying

a null date (CTOD("")) returns zero.

2762

NB functions

Some functions made into nB are available for macro use. Not all
available functions are here documented.

ACCEPT()

ACCEPT (Field, [cMessage] , [cHeader]) = updatedField | NIL

It 1s a prompt function that shows cMessage asking to type some-
thing into Field. It returns the updated data or NIL if [Esc] was
pressed. The string cHeader 1s showed centered at the top window.

ACHOICEQ

ACHOICE (nTop, nLeft, nBottom, nRight,
acMenultems ,
[alSelectableItems] ,
[nInitialItem] ,
[lButtons | aButtons]) = nPosition

nTop, nLeft, nBottom,

nRight are the window coordinates.

1s an array of character strings to display as
the menu items.

acMenultems

2763

is a parallel array of logical values (one el-
ement for each item in acMenultems) that
specify the selectable menu items. Ele-
ments can be logical values or character
strings. If the element is a character string,
it 1s evaluated as a macro expression which
should evaluate to a logical data type. A
value of false (‘.F.”) means that the corre-
sponding menu item is not available, and a
value of true (‘. T.’) means that it is avail-
able. By default, all menu items are avail-

able for selection.
1s the position in the acMenultems array

ninitialltem of the item that will be highlighted when
the menu 1s initially displayed.
if True means that default buttons will ap-

alSelectableltems

[Buttons pear.

aButtons is an array of buttons.
aButtons|[n][1] == the nth button row position;
aButtons|n][2] == the nth button column position;
aButtons|n][3] == the nth button text;
aButtons|[n][4] == the nth button code block.

ACHOICE() returns the numeric position in the acMenultems array
of the menu item selected. If no choice is made, ACHOICE() returns
Zero.

ACHOICEWINDOWO(

27764

ACHOICEWINDOW (acMenultems, [cDescription] ,
nTop, nleft, nBottom, nRight,

[alSelectableItems] ,
[nlnitialltem|) = nPosition
acMenultems 1s an array of character strings to display as
the menu items. .
cDescription is a header to be shown at the top of win-
dow.
nTop, nLeft, nBottom, , _
nRight are the window coordinates.
is a parallel array of logical values (one el-
ement for each item in acMenultems) that
specify the selectable menu items. Ele-
ments can be logical values or character
strings. If the element is a character string,
alSelectableltems it 1s evaluated as a macro expression which

should evaluate to a logical data type. A
value of false (‘. F.”) means that the corre-
sponding menu item is not available, and a
value of true (‘. T.’) means that it is avail-
able. By default, all menu items are avail-

able for selection.
1s the position in the acMenultems array

ninitialltem of the item that will be highlighted when
the menu i1s initially displayed.

ACHOICEWINDOWY() calls ACHOICE() with a window border
around the ACHOICE() screen area.

2765

ALERTBOXO

ALERTBOX (cMessage, |[aOptions|) = nChoice

is the message text displayed, centered, in
the alert box. If the message contains one
cMessage or more semicolons, the text after the semi-
colons is centered on succeeding lines in

the dialog box.
defines a list of up to 4 possible responses

to the dialog box.

aOptions

ALERTBOX() returns a numeric value indicating which option was
chosen. If the [Esc] key is pressed, the value returned is zero. The
ALERTBOX() function creates a simple modal dialog. The user
can respond by moving a highlight bar and pressing the Return or
SpaceBar keys, or by pressing the key corresponding to the first letter
of the option. If aOpftions is not supplied, a single "Ok" option is
presented.

ALERTBOX() 1s similar to ALERT() but 1t accept mouse input.
ATBO

2766

ATB ([nTop] , [nLeft] , [nBottom] , [nRight] ,
aArray, [nSubscript],
[acColSayPic | ,
[acColTopSep |, [acColBodySep], [acColBotSep],
[acColHead] , [acColFoot] ,
[abColValid] ,
[abColMsg | ,
[cColor] , [abColColors] ,
[IModify | ,
[lButtons | aButtons]) = NIL

nTop, nLeft, nBottom, | defines the screen area where browse have

nRight to take place.
aArray bidimensional array to be browsed.
nSubscript starting array position.
acColSayPic is the picture array.
acColTopSep is the top separation array: default is

chr(194)+chr(196).

is the body separation array: default is
acColBodySep chr(179).

is the bottom separation array: default is
acColBotSep chr(193) +chr(196). ’
acColHead is the header array for every column.
acColFoot is the footer array for every column.

is the validation array that specify when a
abColValid field 1s properly filled. The condition must

be specified in code block format.

27767

is the message array that permits to show
information at the bottom of browse area.
abColMsg)
The array must be composed with code
blocks which result with a character string.
cColor is the color string: it may be longer than
the usual 5 elements.
is the color code block array. The code
block receive as parameter the value con-
abColColors tained inside the field and must return an
array containing two numbers: they corre-
spond to the two color couple from c¢Color.
IModify zln(zlcates whether the browse can modify
ata.
[Buttons if True, default buttons are displayed.
aButtons array of buttons.
aButtons|n|] the nth button row position;
aButtons|n|] the nth button column position;
aButtons|[n] the nth button text;
aButtons|n] the nth button code block.

This function starts the browse of a bidimensional array. Only ar-
rays containing monodimensional array containing the same kind of
editable data are allowed. The function can handle a maximum of

61 columns.

BCOMPILEQ

BCOMPILE (cString)

= bBlock

Compiles the string ¢String and returns the code block bBlock

2768

BUTTONQ

BUTTON (QaButtons,
[nRow] , [nCol] , [cText] , [cColor] ,
[bAction]) = NIL

the array of buttons to be increased with a

new button array.
is the row and column starting position for

the button string.

aButtons

nRow and nCol

cText 1s the text that make up the button.
cColor is the color string.
bAction 1s the code block associated to the button.

This function adds to aButtons a new button array. Please note that
the button array added is compatible only with the READ() function
and not the other function using array of buttons: the others do not
have a color string.

COLORARRAY()

COLORARRAY (cColor) = aColors

a color string to be translated into a color
array.

cColors

This function transform a color string into a color array. The array
has as many elements as the colors contained inside cColor string.

2769

COORDINATEQ

COORDINATE ([@nTop, @nLeft], @nBottom, @nRight,
[cHorizontal] , [cVertical]) = NIL

nTop, nLeft, nBottom | are the starting position of a window that is

and nRight to be differently aligned.

determinates the horizontal alignment:
"L" all left;

"1" middle left;

cHorozontal "C" center;

n_n

C center,
"R" all right;
"r" middle right.
determinate the vertical alignment:

cVertical "C" center;

"c" center;
"B" bottom;

"b" down.

This function helps with the windows alignment recalculating and
modifying nTop, nleft, nBottom and nRight in the way to obtain
the desired alignment.

COPYFILEQ

COPYFILE (cSourceFile, cTargetFile|cDevice) = NIL

2770

cSourceFile the source filename.
cTargetFile the target filename.

cDevice the target devicename.

This function copies the cSourceFile to cTargetFile or to cDevice.

DBAPPQ

DBAPP (cFileName, [acFields] ,
[bForCondition] , [bWhileCondition] ,
[nNextRecords] ,
[nRecord] ,
[lRest] ,
[cDriver]) = NIL
cFileName the ﬁle.name. containing data to append to
the active alias.
array of fieldnames indicating the fields
acFields that should be updated on the active alias
(default is all).
a code block containing the FOR condition
. to respect for the data append. Will be ap-
bForCondition pended data that makes the evaluation of
this code block True.
a code block containing the WHILE con-
dition to respect for the data append. Will
. . be appended data as long as the evaluation
bWhileCondition of this code block is True: the first time it
becomes False, the data appending is ter-
minated.
if used, means that only the first
nNextRecord nNextRecords will be appended.

2771

Record if used, means that that only the record
niecor nRecord will be appended.
this option is not available here also if the
IRest . :
function saves a place for it.
cDriver 1s the optional driver name to use to open
the cFileName file.

This function i1s used to append data to the active alias using data
from the cFileName file, that in this case i1s a <. DBF”’ file.

DBCLOSEQ

DBCLOSE () = NIL

It 1s a substitution function of DBCLOSEALL() to use inside "com-
piled" macros, as a true DBCLOSEALL() will close the macro file
too.

DBCONTINUEQ

DBCONTINUE () = NIL

This function resumes a pending DBLOCATE().
DBCOPY()

2772

DBCOPY (cFileName, [acFields] ,
[bForCondition] , [bWhileCondition] ,

[nNextRecords] ,
[nRecord]

[IRest]
[

cDriver] = NIL

cFileName

the target filename for the data contained
inside the active alias.

acFields

array of fieldnames indicating the fields

that should be used from the active alias
(default is all).

bForCondition

a code block containing the FOR condition
to respect for the data copy. Will be copied
the data that makes the evaluation of this
code block True.

bWhileCondition

a code block containing the WHILE con-
dition to respect for the data copy. Will
be copied data as long as the evaluation
of this code block is True: the first time it
becomes False, the data copying is termi-
nated.

nNextRecord

if used, means that only the first
nNextRecords will be copied.

nRecord

if used, means that that only the record
nRecord will be copied.

IRest

if used means that only the remaining
records inside the active alias are copied.

cDriver

is the optional driver name to use to open
the cFileName file.

27773

This function is used to copy data to cFileName form the active
alias.

DBCOPYSTRUCTQO

DBCOPYSTRUCT (cDatabase, [acFields]) = NIL

1s a structure ¢.DBF’ file that will be filled
cDatabase with structure information about the active

alias.
is an array of fieldnames that should be

taken into consideration.

acFields

This function creates a structure ‘.DBF’ file copying the structure of
the active alias.

DBCOPYXSTRUCT(

DBCOPYXSTRUCT (cExtendedDatabase) — NIL

1s a structure ‘.DBF’ file that will be filled
with structure information about the active
alias, accepting extended structure infor-
mations.

cExtendedDatabase

This function creates a structure ‘. DBF’ file copying the structure of
the active alias. This function accept non-standard structure, that is,
the extended structure available inside Clipper.

2774

DBDELIMQO

DBDELIM ([CopyTo, cFileName, [cDelimiter] , [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest]) = NIL

if True the function work copying data to
cFileName from the active alias, if False
the function work appending data from

cFileName to the active alias.
the filename containing data to append to

cFileName the active alias or to use as the target of the

data copy from the active alias.
the delimiter string (or character) used to

separate fields inside cFileName.
array of fieldnames indicating the fields of

acFields the active alias that should be taken into

consideration (default is all).
a code block containing the FOR condition

bForCondition to respect. The operation will be made for

all records that respect the condition.
a code block containing the WHILE con-

bWhileCondition dition to respect. The first time it becomes

False, the operation is terminated.
if used, means that only the first

ICopyTo

cDelimiter

nNextRecord nNextRecords will be appended/copied.
if used, means that that only the record

nRecord nRecord will be appended/copied.

IRest if used means that only the remaining

records will be taken into consideration.

This function 1s used to append data to the active alias using data
27775

from the cFileName file or to copy data into cFileName using the
active alias as the source. cFileName 1s a delimited ASCII file.

DBISTATUSQO

DBISTATUS () = cDBInformations

This function returns the informations on the active alias in a text
form.

DBISTRUCTUREQ

DBISTRUCTURE () = cTextStructure | NIL

This function returns the structure information on the active alias in
a text form.

DBJOINQO

DBJOIN (cAlias, cDatabase,
[acFields] , [bForCondition]) = NIL

the name of the alias to use to merge with

records from the active alias.
cDatabase the target . DBF’ filename.

the array of fieldnames which represent the
projection of fields form both Aliases into
acFields the new °.DBF’ file. If not specified, all
fields from the primary work area are in-
cluded in the target ‘. DBF” file.

cAlias

2776

This function creates a new database file by merging selected records
and fields form two work areas (Aliases) based on a general condi-
tion. It works by making a complete pass through the secondary
work area cAlias for each record in the primary work area (the ac-
tive alias), evaluating the condition for each record in the secondary
work area. When bForCondition is evaluated True, a new record is
created in the target database file cDatabase using the fields speci-
fied from both work areas inside acFields.

DBLABELFORMOQ)

DBLABELFORM (cLabel, [lToPrinter] , [cFile] ,
[lNoConsole] , [bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest] , [lSample])

= NIL
1s the name of the label file (.LBL) that
cLabel : .
contains the label format definition.
ToPri if True, the output is copied to printer
of’rinter (‘LPT1:").
, if present, it is the name of a ASCII file
cFile

where the output is copied.

INoConsole if True, the output is not sent to the console.
a code block containing the FOR condition
to respect for label print. Only the records

bForCondition contained inside the active alias that re-
spect the condition will be used for labels.
a code block containing the WHILE condi-
bWhileCondition tion to respect for the label print. The first

time that the condition i1s False, the label
print terminates.

27777

if used, means that only the first
niNextRecord niNextRecords will be used.
nRecord if used, means that that only the record
nRecord will be used.
IRest if used means that only the remaining
records inside the active alias will be used.
ISample if True displays test labels as rows of aster-
1sks.

This function prints labels to the console.

DBLISTO

[lAll],

bForCondition] ,

lToPrinter] ,

DBLIST ([lToDisplay] , abListColumns,

[bWhileCondition] ,

[
[nNextRecords] , [nRecord] , [lRest] ,
[[cFileName])

if True the printout is sent to the console

[ToDisplay
screen.
abListColumns is an array of columns expressions to list.
if True prints all the records contained in-
IAll : : :
side the active alias.
a code block containing the FOR condition
. to respect. Only the records contained in-
bForCondition side the active alias that respect the condi-
tion will be used for list.
a code block containing the WHILE condi-
bWhileCondition tion to respect. The first time that the con-
dition 1s False, the list terminates.
if used, means that only the first
nNextRecord nNextRecords will be used.

27778

wRecord if used, means that that only the record
eco nRecord will be used. _
IRest if used means that only the remaining
records inside the active alias will be used.
IToPri if True, the output is copied to printer
or'rinter (‘LPT1:").
. if present, it is the name of a ASCII file
cFileName : ,
where the output is copied.

This function prints a list of records to the console.

DBLOCATEQ

DBLOCATE ([bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest]) = NIL

a code block containing the FOR condition
to respect. Only the records contained in-
side the active alias that respect the condi-

tion will be taken into consideration. .
a code block containing the WHILE condi-

bWhileCondition tion to respect. The first time that the con-

dition 1s False, the locate terminates.
if used, means that only the first

bForCondition

niNextRecord nNextRecords will be used.

Record if used, means that that only the record
e nRecord will be used.
IRest if used means that only the remaining

records inside the active alias will be used.

This function searches sequentially for the first record matching the
FOR and WHILE conditions. Once a DBLOCATE() has been issued

27779

you can resume the search from the current record pointer position
with DBCONTINUE().

The WHILE condition and the scope (nNextRecord, nRecord and
[Rest) apply only to the initial DBLOCATE() and are not operational
for any subsequent DBCONTINUE() call.

DBOLDCREATEQ

DBOLDCREATE (cDatabase, cExtendedDatabase,
[cDriver] , [lNew] , [cAlias]) = NIL

1s the name of the new database file, with
an optional drive and directory, specified
as a character string. If specified without

an extension (.dbf) is assumed.
is a ‘. DBF’ file containing the structure in-

formation of the file to create. .
specifies the replaceable database driver

(RDD) to use to process the current work
area. cDriver 1s the name of the RDD spec-

ified as a character expression.
if True the newly created ‘.DBF’ file is

opened using the next available work area
making it the current work area (the active
alias).

if INew 1s set to True, this is the alias name
to use to open the file.

cDatabase

cExtendedDatabase

cDriver

INew

cAlias

This function 1s a old database function (superseded form DBCRE-
ATE()) that creates a database file from the structure information
contained inside a structure file.

27780

DBPACKQ

DBPACK () = NIL

This function eliminates definitively the active alias records previ-
ously signed for deletion. It works only if the active alias is opened
in exclusive mode.

DBSDFQO

DBSDF (lCopyTo, cFileName, |[acFields],

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest]) = NIL

if True the function works copying data to
cFileName from the active alias, if False
the function work appending data from

cFileName to the active alias.
the filename containing data to append to

cFileName the active alias or to use as the target of the

data copy from the active alias.
array of fieldnames indicating the fields of

acFields the active alias that should be taken into

consideration (default is all).
a code block containing the FOR condition

bForCondition to respect. The operation will be made for

all records that respect the condition.
a code block containing the WHILE con-

bWhileCondition dition to respect. The first time it becomes
False, the operation is terminated.

[CopyTo

2781

NextRecord if used, means that only the first
nivextiiecor nNextRecords will be appended/copied.
R J if used, means that that only the record
nicercor nRecord will be appended/copied.
if used means that only the remaining
[Reset) : : .
records will be taken into consideration.

This function 1s used to append data to the active alias using data
from the cFileName file or to copy data into cFileName using the
active alias as the source. cFileName is a SDF ASCII file.

DBSORTQ

DBSORT (cDatabase, [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest]) = NIL

cDatabase the ‘. DBF” file to create.
. the array of fields to be used to create the
acFields

new sorted cDatabase file.
a code block containing the FOR condition

to respect. Only the records contained in-
side the active alias that respect the condi-

tion will be taken into consideration.
a code block containing the WHILE condi-

bWhileCondition tion to respect. The first time that the con-

dition 1s False, the sort terminates.
if used, means that only the first

nNextRecord nNextRecords inside the active alias

will be used.
if used, means that that only the record

nRecord will be used.

2782

bForCondition

nRecord

[Rest

if used means that only the remaining
records inside the active alias will be used.

Copy the active alias to a *.DBF’ file in sorted order.

DBTOTALQ)

DBTOTAL (cDatabase, bKey, [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest]) = NIL

cDatabase

the ‘.DBF’ file to create that will contain
the copy of summarised records.

bKey

the code block key expression that should
correspond to the key expression of the ac-
tive index of the active alias.

acFields

the array of fields to be used to create the
new cDatabase file.

bForCondition

a code block containing the FOR condition
to respect. Only the records contained in-
side the active alias that respect the condi-
tion will be taken into consideration.

bWhileCondition

a code block containing the WHILE condi-
tion to respect. The first time that the con-
dition 1s False, the sort terminates.

nNextRecords

if used, means that only the first
nNextRecords inside the active alias
will be used.

nRecord

if used, means that that only the record
nRecord will be used.

[Rest

if used means that only the remaining
records inside the active alias will be used.

27783

This function summarises records by key value to a ‘.DBF’ file. It
sequentially process the active alias scanning the specified scope of
records. Records with the same key will be summarised inside the
destination ‘.DBF’ file. The value of numeric fields of records with
the same key are added.

DBUPDATEQ

DBUPDATE (cAlias, bKey, [lRandom] , [bReplacement])

is the alias containing data to be used to

update the active alias.
1s a code block expression using informa-

bKey tion form the cAlias to obtain a key to refer

to the active alias. .
if True, allows record in the cAlias to be in

IRandom any order. In this case, the active alias must

be indexed with the same key as bKey.
1s the code block that will be executed

bReplacement when records matches: it should contains
the criteria for data update.

cAlias

This function updates the active alias with data from another .DBF
file.

Example:
dbUpdate ("INVOICE", {|| LAST}, .T.,;
{I'l FIELD->TOTALl := INVOICE->SUMI, ;
FIELD->TOTAL2 := INVOICE->SUM2 })

27784

DBZAPQ)

DBZAP () = NIL

This function erases immediately all the records contained inside the
active alias.

DISPBOXCOLOR()

DISPBOXCOLOR ([nColorNumber], [cBaseColor]) = cColor

may be 1 or 2 and are the two color used to
create shadowed borders. 1 is usually used
for the left and top line; 2 is used for the

right and bottom line.
1s the starting color string. The default is

the actual color.

nColorNumber

cBaseColor

This function return a color string used for DISPBOXSHADOW()
the function that create a shadowed border around a screen window.

DISPBOXSHADOW()

DISPBOXSHADOW (nTop, nLeft, nBottom, nRight,
[cBoxString] , [cColor]] , [cColorZ]) = NIL

nTop, nLeft, nBottom | are the screen coordinate where the box is
and nRight to be displayed.
1s the box string containing the character to
cBoxString use to build the box. Default is a single line
box

2785

is the color string to use for the left and top
cColorl side of the box.
cColor2 is the color string to use for the right and
bottom side of the box.

This function draws a screen box like DISPBOX() but allowing the
variation of colors around the border to simulate a sort of shadow.

DIRO

DIR ([cFileSpec] , [lDrives] , [lDirs] , [lFiles] ,
[lNoDirReturn] , [nSortColumn]) = cPathname

. the filename or Pathname, also with wild-
cFileSpec
cards, to be searched.
IDrives true (‘. T.’) means: include drives letters.
IDirs true (‘.T.’) means: include directory
names.
[Files true (‘. T.”) means: include file names.
. true (‘.T.’) means: do not return the
INoRirReturn shown directory if [Esc] is used to exit.
the column number to use to sort the list.
The columns are:
Name =1,
Size = 2,
nSortColumn Date = 3,
Time = 4,
Attribute = 5.
It is not possible to sort for extention.

It 1s a window function useful to search a file or a directory. The

2786

complete pathname of the selected file is returned.

DOCO

DOC ([cTextFileName]) = NIL

can contain the text file to open and edit;
cTextFileName if empty, the editing of ‘UNTITLED.TXT’
will start.

It is the nB Text editor useful for small text files (less then 64K) and
contains a complete menu that can be started with [FIO].

Attention: doc() should not be used inside macros.

DOTLINEQ

DOTLINE () = NIL

This function is a "dot" command line useful for calculations reso-
lution. The dot-line content may be passed to the keyboard buffer.

DTEMONTHQO

Date of month

DTEMONTH (nMonth, cLanguage) = cMonth

nMonth the month number.

cLanguage the language name.
2787

This function translates the nMonth number into the month name
translated using the cLanguage language.

DTEWEEKQ

Date of week

DTEWEEK (nWeek, cLanguage) = cWeek

1s the week number (1 is Sunday, 7 is Sat-

urday) to be translated into text.
1s the language name into which the week

must be expressed. At the moment it works

only for Italian, so cLanguage can only
contain "ITALIANQO".

nWeek

cLanguage

This function translates the week number into the week name trans-
lated using the cLanguage language.

EXO

Execute

EX (cFileMacro) = nExitCode

Executes the macro file cFileName. The extention must be speci-
fied.

cFileMacro may be the name of a "compiled" macro or a text macro
file.

27788

GETO

GET (QaGetList,
[nTop], [nLeft],
{ |x|] iif(pcount() > 0, Var := x, Var) }
[cGetPicture] , [cColorString] ,
[bPreExpression] , [bValid])

is the get list array that will be increased

aGetlList with this get().

define the starting position of this get ob-

nTop and nLeft ject on the screen.

1s the variable that 1s to be edited with this

Var get. Var is in fact sent to the GET() func-
tion using a code block.

cGetPicture is the get picture to use for Var.

cColorString is the color string to use for the get.

is a code block that will be evaluated be-
fore the get object will became active. It

bPreExpression must result True to obtain that the get ob-
ject became active.

is a code block that will be evaluated after

bValid the get object is edited. It must result True

to obtain that the get object may become
inactive.

Create screen editing masks.

27789

GVADD()

Get validation add

GVADD (QcField, cAdd) = .T.

cField the field to fill with more data.

is the string to be added to the content of
cAdd :

cField.

This function is to be used inside GET's for pre/post validation, when
a the content of a field should be added with more data.

cField is returned with the same length as before to avoid troubles
with current and future GETs.

GVDEFAULT()

Get validation default

GVDEFAULT (QcField, cDefault) = .T.

@cField the field to check and if empty correct with
cre cDefault.
1s the default value to be used to replace
D lt 1S t p
cDejau cField.

This function is to be used inside GET's for pre/post validation, when
a field should have a default value.

cField is returned with the same length as before to avoid troubles
with current and future GETs.

2790

GVFILEDIRO

Get validation file directory

GVFILEDIR(Q@cWildName) = .T.

is the file name taken from the current get

cWildName to be used for search with DIR().

This function is to be used inside GETs for pre validation: the
cWildName is a file name with wild cards that can be searched with
the DIR() function after that a specific key is pressed.

cWildName is returned with the same length as before to avoid trou-
bles with current and future GETs.

GVFILEEXISTO

GVFILEEXIST(@cNameToTest, [cExtention]) = ISuccess

1s the file name taken from the current get
@cNameToTest) g
to test for existence.
cExtention 1s the normal extention of the file.

This function is to be used inside GETs for post validation: the file
name have to exist.

cNameToTest is returned with the same length as before to avoid
troubles with current and future GETs.

2791

GVFILEEXTENTIONQ

GVFILEEXTENTION (Q@cName, cExt) = .T.

the file name to be eventually corrected
@cName .)

with file extention.
cExt the file extention to use as default.

This function is to use inside GET's for pre/post validation, when the
content of a field should contain a file name that should be corrected
adding a default extention if not given from the user.

GVSUBSTQ

GVSUBST (QcField, cSubst) = .T.

@cField the field to be replaced with cSubst.
cSubst is the string to be used to replace the con-
tent of cField.

This function is to use inside GETs for pre/post validation, when the
content of a field should be replaced with other data.

cField is returned with the same length as before to avoid troubles
with current and future GETs.

HTFQO

HTF ([nlnitialRecord]) = NIL

27792

is the record number where to start the
ninitialRecord Help Text File browse. Default is the ac-
tual record pointer.

This function browse a Help Text File that must be already opened
and be the active alias.

ISFILEQ

ISFILE (¢cName) = IFileExists

1s the file name (with or without path) to be

cName i
checked for existence.

This function returns true (‘. T.”) if the file cName exists. The dif-
ference between this function and the standard FILE() function is
that ISFILE() checks for wildcards before. If cName contains wild-
cards, the result is false (‘. F.”).

ISWILDO

ISWILD (c¢Name) = IlIsWild

is the file name (with or without path) to be

cName checked for wildcards presence.

This function returns true (‘. T.’) if cName contains wildcards.

2793

ISMEMVARQ

TSMEMVAR (¢Name) = lIsMemvar

cName is the name of a possible memvar.

This function returns true (‘. T.’) if the cName 1s a declared Mem-
var.

ISCONSOLEONQ

TSCONSOLEON () = lConsolelsOn

This function returns true (‘. T.”) if the console will show the result
of QOUT() and QQOUT().

ISPRINTERONQ)

ISPRINTERON () = IPrinterlsOn

This function returns true (‘. T.) if the default printer will report the
the result of QOUT() and QQOUT().

The default printer is ‘PRN:’ or ‘L.PT1:’. If SET ALTERNATE TO is
configured to send outputs to ‘LPT2 :’ or another printer, the function
will report false (‘*.F.’).

27794

KEYBOARDOQ

KEYBOARD ([cString]) = NIL

This function stuff a string into the keyboard buffer.

LISTWINDOW(Q

LISTWINDOW (acMenultem, [cDescription] ,
[nTop] , [nLeft] , [nBottom] , [nRight] ,
[cColorTop |, [cColorBody]|) = nPosition

is the character array containing the list of
acMenultem . y 8
choices. .
. 1s the header to be shown at the top win-
cDescription
dow.
nTop, nLeft, nBottom, , ,
. are the window coordinates.
nRight
is the color to use for window header and
cColorTop
footer. .
is the color to use for the window body that
cColorBody .
is the space where the text appears.

This function is an similar to achoice(), but it shows a header and
footer, and it saves the screen, acting like a window.

MEMOWINDOWQ

2795

MEMOWINDOW (cVar,

[¢Description | ,

[nTop], [nLeft],

[nBottom] , [nRight] , [cColorTop] , [cColorBody] ,
EditMode | , |nLinelLength|, |[nTabSize|) = cVar
[EditMode] , [h], [nTabSize]
cVar 1s the character field (variable) to be edited.
cDescription is the header to be shown at the top win-
dow.
nTop, nLeft, nBottom, _ ,
nRight are the window coordinates.
¢ColorTop 1s the color to use for window header and
footer. .
cColorBod is the color to use for the window body that
Y is the space where the text appears.
IEditMode 1s equivalent to memoedit().
nLineLength is equivalent to memoedit().
nTabSize is equivalent to memoedit().

This function lets you easily edit a long character field (memo) defin-
ing automatically a simple window and providing a simple help.

MEMPUBLICQ)

MEMPUBLIC (cMemvarName|acMemvarNames) = NIL

1s the name of the PUBLIC variable to cre-
cMemvarName

ate (max 10 characters).

is an array of PUBLIC variable names to
acMemvarNames

create (max 10 characters).

Creates a PUBLIC variables or a group of variables.

2796

MEMRELEASEQ

MEMRELEASE (cMemvarName | acMemvarNames) — NIL

1s the name of the PUBLIC variable to be

cMemvarName

released. _

1s an array of PUBLIC variable names to
acMemvarNames

be released.

This function releases a previously created PUBLIC variables or a
group of variables.

MEMRESTORE()

MEMRESTORE (cMemFileName, [lAdditive]) = NIL

cMemFileName the memory file (MEM) to load from disk.
if True causes memory variables loaded
from the memory file to be added to the ex-
IAdditive isting pool of memory variables. If False,
the existing memory variables are automat-
ically released.

Retrieve memory variables form a memory file (MEM).

MEMSAVEQ

MEMSAVE (cMemFileName, [cSkeleton] , [lLike]) = NIL

27797

the memory file (MEM) where public

variables should be saved.
the skeleton mask for defining a group

cSkeleton of variables. Wildcard characters may be

used: _*_and _?_.
if True, the variables grouped with

ILike cSkeleton are saved, else only the other
variables are saved.

cMemFileName

Saves memory variables to a memory file (MEM).

MENUPROMPTQ)

MENUPROMPT (QaoGet,
[nRow] , [nCol] ,
[cPrompt] , [bBlock]) = NIL

is an array of get objects where a new get
aoGet is added by MENUPROMPT(). These gets

are read only.
are the screen coordinates where the menu

prompt will appear.

cPrompt is the menu prompt string.

is the code block to execute when the cur-
sor 1s on the current menu prompt. It 1s
usually a code block that shows a message
somewhere on the screen.

nRow and nCol

bBlock

This function should substitute the @...PROMPT command and han-
dle the mouse.

27798

MENUTOQO

MENUTO (aoGet, nPos) = nChoice

aoGet array of get objects.
nPos starting position to be edited.

Like MENU TO. It returns the selected menu item created with
MENUPROMPT(). It supports the mouse.

MESSAGELINEQ)

MESSAGELINE ([cMessage] , [cColor] , [nPosTop] , [nPosLeft])

= NIL
aMessage the message to be displayed.
cColor the color string.
the starting position where the string mes-
nPosTop and nPosLeft sage would appear on the screen. Default
values are respectively ROW() and COL().

MESSAGELINE() 1s a function that display a message on the screen
on the selected position. If cMessage 1s NIL, the message 1s elimi-
nated from screen restoring the previous screen content.

MOUSESCRSAVEQ

MOUSESCRSAVE ([nTop], [nLeft], [nBottom], [nRight])
= cSavedScreen

2799

nTop, nLeft, nBottom | are the screen coordinates that will be to
and nRight save the screen.

This function works line SAVESCREEN() but 1t hide the mouse cur-
sor before a screen save 1s made.

MOUSESCRRESTOREQ

MOUSESCRRESTORE ([nTop] , [nLeft] , [nBottom] , [nRight] ,

[cScreen]) = cSavedScreen
nTop, nLeft, nBottom | are the screen coordinates where the saved
and nRight screen will be restored.
cScreen is the previously saved screen to restore.

This function works line RESTSCREEN() but it hide the mouse cur-
sor before a screen restore 1s made.

PICCHRMAXQO

PICCHRMAX ([nCol] , [nMaxCol]) = cPictureString

Col is the starting position on the screen for the
o get field.
nMaxCol ;ise;ge end position on the screen of the get

This function is useful when a character field is to be used on a get
object. The generated picture will be the of the maximum possible
extention, eventually with scroll.

2800

QUITO

QUIT () = NIL

Terminates program execution.

READQ

READ (aoGet, [nPos] , [aButtons] , [lReadOnly])

= Updated
aoGet 1s the array of get objects.
nPos is the starting position.
aButtons is the array of buttons.
IReadOnly if True, get fields cannot be modified; the
default value is False.

This function 1s made to substitute the READMODAL() allowing
the use of the mouse. The array aButtons is made with the help of
the function BUTTON().

RFO

RF (cFRMName,
[bForCondition] , [bWhileCondition] ,

[nNext] , [nRecord] , [lRest] , [lPlain] ,
[cbHeading | , [IBeforeEject], [IlSummary],
[lDate] , [acExtra]) = NIL

2801

the form (.FRM) file to use to print the ac-

cFRMName : :
tive alias.
bForCondition code block for the FOR condition.
bWhileCondition code block for the WHILE condition.
niNext see REPORT FORM.
nRecord see REPORT FORM
IRest see REPORT FORM
) if true (*.T.’), force the print in a simple
[Plain
way.
additional header in character or code
cbHeading block form. If a code block is sent, the final
result must be a character string.
IBeforeEject if Frue (‘. T.”), force a form feed before the
print.
ISummary if true (*.T.’), force a summary print only.
Date if false (*.F.’), force the print without date

at the top of page.
a character array that may be used for

translating standard printed report form
words and to add vertical and horizontal
separations. The default value of acExtra
18:

acExtra|[1] "Page No."

acExtra acExtra[2] "** Subtotal **"

acExtra[3] "* Subsubtotal *"

acExtra[4] "*** Total ***"

acExtra[5] " " vertical column separation
axExtra[6] "" horizontal separation: no
separation.

This function does the same work of REPORT FORM or __Report-
Form or dbReportForm, but it prints where qout() and qqout() print.

2802

RPTO

RPT(cText) = NIL

This function prints the text contained into c¢7ext using print com-
mands. This function accepts other parameters here not described,
as they are not to be used for macro purpose. The printing is made

using QOUT() and QQOUT(), this way it is sensible to the "alter-
nate" file definition.

RPTMANYQ

RPTMANY (cText, [bWhileCondition] , [bForCondition])

— NIL
cText is the text to be printed.
. . 1s a code block for a WHILE condition to
bWhileCondition :
respect for the records to print.
. 1s a code block for a FOR condition to re-
bForCondition :
spect for the records to print.

This function prints the text contained into ¢7Text many times: one
for every record contained into the active alias.

RPTTRANSLATEQ

RPTTRANSLATE (cText) = cTranslatedText

This function translates once cText replacing variables with mem-
vars or Fields.

2803

RUNQO

RUN (cCommand) = NIL

This function start execution of cCommand in a DOS session. It
works only if there is enough available memory.

SAY()

SAY (nTop, nLeft, Expr,
[cSayPicture] , [cColorString]) = NIL

define the starting position on the screen

where the Expr should be displayed.
1s an expression that will be solved and dis-

nTop and nlLeft

nlLeft played.
cSayPicture is the picture to use to display Expr.
cColorString is the color string to use.

This function displays the result of Expr on the screen on the desired
position.

SETCOLORSTANDARDQ

SETCOLORSTANDARD ([nColor] , [cColor|acColor])

= cPreviousColor | acPreviousColor

2804

nColor

1s the color number to take into considera-
tion:

0 All colors

1 Base

2 Menu

3 Head

4 Body (Say - Get)

5 Button (Mouse buttons)

6 Message

7 Alert

cColor

the color string to be associated with
nColor.

acColor

it the color array

This function is a way to handle colors inside the application. The
functions that display something use a default color depending on
what they does. These colors may be changed with SETCOLOR-
STANDARDY(), all together or only one.

SETFUNCTIONQ

SETFUNCTION (nFunctionKey, cString) = NIL

wFunctionKe the number of the function key (1=FI,
Y 12=F12) to be assigned.
cString the character string.

This function assigns a character string to a function key (obsolete).

2805

SETMOUSEQ

SETMOUSE ([lShow]) = [Previous

True shows the mouse cursor, False hide
IShow the mouse cursor, NIL reports only the sta-
tus.

This function is made to show, hide or report only the mouse cursor
status.

SETOUTPUTO

SETOUTPUT ([cPeriperal | aPeripheral])
= aPrevious_Qutput_Peripherals

cPeripheral is the new ou.tput peripheral for qout() and
qqout() functions.
. are the new output peripherals configura-
aPeripheral tions for qout() and qqout() functions.

nB is organised in the way to have only one output peripheral at the
time. This function help to make order inside SET CONSOLE, SET
PRINTER and SET ALTERNATE.

If cPeripheral contains:

HCONH

SET CONSOLE is set to ON,
SET PRINTER is set to OFF,
SET ALTERNATE 1is set to OFF;

2806

HPRNH

SET CONSOLE is set to OFF,
SET PRINTER is set to ON,
SET ALTERNATE 1is set to OFF;

HLPTI 1A
same as "PRN";

otherwise

SET CONSOLE is set to OFF,

SET PRINTER is set to OFF,

SET ALTERNATE 1is set to ON,

SET ALTERNATE TO is set to cPeripheral.

aPeripheral is organised this way:
aPeripheral[1] = _SET_CONSOLE
aPeripheral[2] = _SET_PRINTER
aPeripheral[3] = _SET_ALTERNATE
aPeripheral[4] = _SET_ALTFILE
aPeripheral[5] = _SET_EXTRA
aPeripheral[6] = _SET_EXTRAFILE

This function is necessary because SET ALTERNATE alone is not
enough to print on the screen when the peripheral name is "CON" or
to print on the printer when the peripheral name is "PRN" or "LPT1".
In fact, in the first case, ROW() and COL() will not be updated, in
the second case, PROW() and PCOL() will not be updated.

This function returns an array organised in the same way as
aPeripheral is, that shows the active output configuration.

2807

SETRPTEJECTO

SETRPTEJECT ([IbEject]) = IPreviousEjectMode

This function 1s used to set the eject mode after every page print for
RPT(). If single sheet paper is used, then SETRPTEJECT(.T.) must
be set; for continuous paper, SETRPTEJECT(.F.) is correct. The

default value 1s .F..

logical or code block, is the eject mode to
IbEject set. Default is no change, the starting value
is ‘.F.’
SETRPTLINESQ

SETRPTLINES () = nRemainingLines

This function is used to report the number of lines available before
the completion of the page print for RPT().

SETVERB()

Set verbose

SETVERB (cSpecifier, [xNewSetting]|, [lOpenMode])
= xPreviousValueSet

. a word that defines the kind of set is going
cSpecifier ,
to be considered.
xNewSetting is the new value to set up.
lOpenMode used only for some kind of set.

2808

This function is analogue to SET() but it uses a character string (with
cSpecifier) and not a number to select the set. This is made to make
easier the work with macros.

cSpecifier may contain:

"EXACT"
"FIXED"
"DECIMALS"
"DATEFORMAT"
"EPOCH"
"PATH"
"DEFAULT"
"EXCLUSIVE"
"SOFTSEEK"
"UNIQUE"
"DELETED"
"CANCEL"
"TYPEAHEAD"
"COLOR"
"CURSOR"
"CONSOLE"
"ALTERNATE"
"ALTFILE"
"DEVICE"
"EXTRA"
"EXTRAFILE"
"PRINTER"
"PRINTFILE"
"MARGIN"

2809

"BELL"
"CONFIRM"
"ESCAPE"
"INSERT"
"EXIT"
"INTENSITY"
"SCOREBOARD"
"DELIMITERS"
"DELIMCHARS"
"WRAP"
"MESSAGE"
"MCENTER"

SETVERB("EXACT") (obsolete)

SETVERB ("EXACT", [lExact]) = [Previous

If [Exact 1s True, it forces exact comparison of character strings,
including length. If it is False, character strings are compared until
the left string length is exhausted; that is that "" (the null string) is
equal to any other string.

Please note that the == operator is a comparison operator for exact
match and using it, SETVERB("EXACT", ‘.F.’) will not work.

The starting value 1s True; the recommended value is True.

2810

SETVERB("FIXED")

SETVERB("FIXED", [lFixed]) = [Previous

If [Fixed contains True, numeric values are displayed ever with
a fixed number of decimal digits, depending on the value set by
SETVERB("DECIMALS").

The starting value is False.

The recommended value is False: if you have to display a fixed num-
ber of decimal digits it is better to define a good display picture.

SETVERB("DECIMALS")

SETVERB ("DECIMALS", [nDecimals]) = nPrevious

nDecimals is the number of digits to display after the decimal posi-
tion. This set is enabled of disabled with SETVERB("FIXED").

The starting value is 8.

SETVERB("DATEFORMAT")

SETVERB ("DATEFORMAT", [cDateFormat]) = cPrevious

cDateFormat 1s a character expression that specifies the date format.
The starting value is "dd/mm/yyyy".

Some date format examples:
AMERICAN "mm/dd/yyyy"

2811

ANSI "yyyy.mm.dd"
BRITISH "dd/mm/yyyy"
FRENCH "dd/mm/yyyy"
GERMAN "dd.mm.yyyy"
ITALIAN "dd-mm-yyyy"
JAPAN "yyyy/mm/dd"
USA "mm-dd-yyyy"

SETVERB("EPOCH")

SETVERB ("EPOCH", [nYear]) = nPrevious

nYear specifies the base year of 100-year period in which all dates
containing only two year digits are assumed to fall.

The starting value is 1900.
SETVERB('"PATH")

SETVERB ("PATH", [cPath]) = cPrevious

cPath identifies the paths that nB uses when searching for a file not
found in the current directory. The list of paths can be separated by
commas or semicolons.

nn

The starting value is "".

2812

SETVERB("DEFAULT")

SETVERB ("DEFAULT", [cPath]) = cPrevious

cPath identifies the default disk drive and directory.

nn

The starting value 1s "".

SETVERB("EXCLUSIVE")

SETVERB ("EXCLUSIVE", [lExclusive]) = [Previous

If [Path is True, the default database (.DBF) file open is made in
exclusive mode; in the other case, in shared mode.

The starting value 1s True.

SETVERB("SOFTSEEK")

SETVERB ("SOFTSEEK", [ISoftSeek]|) = IPrevious

If ISoftSeek is True, if a DBSEEK() index search fails, the record
pointer is moved to the next record with a higher key. If it 1s False,
in case of a DBSEEK() index search failure, the record pointer is

moved at EOF().

The starting value is False.

2813

SETVERB("UNIQUE") (obsolete)

SETVERB ("UNIQUE", [lUnique]) = IPrevious

If lUnique is True, during creation or update of ‘.DBF’ indexes,
if two or more records are found with the same key, only the first
record will be included inside the index.

If [Unique is False, duplicated record keys are allowed.

The starting value is False.

SETVERB('DELETED")

SETVERB("DELETED", [lDeleted]) = [Previous

If IDeleted 1s True, record signed for deletion are not filtered, that is,
these are still normally visible as they were not deleted. In the other
case, they hare (in most cases) hidden to the user.

The starting value is False.

SETVERB("CANCEL")

SETVERB ("CANCEL", [lCancel]) = [Previous

If ICancel 1s True, enables [Alt c] and [Ctrl Break] as termination
keys. In the other case, not.

The starting value is True.

2814

SETVERB("TYPEAHEAD")

SETVERB ("TYPEAHEAD", [nTypeAhead]) = nPrevious

nTypeAhead is the number of keystrokes the keyboard buffer can
hold from a minimum of zero to a maximum of 4096.

The starting value is 135.

SETVERB("COLOR")

SETVERB ("COLOR", [cColorString]) = cPrevious

nColorString defines the normal screen colors. There are five cou-
ple of colors, but only three are really operative:

This 1s the standard color used for screen
standard

output.

This is the color used for highlighted
enhanced

screen output.
border Normally unused.
background Normally unused.

This 1s the color used for GET fields with-
unselected

out focus.

The default color string is "BG+/B,N/W,N/N,N/N,W/N" that is:

standard bright Cyan on Blue
enhanced Black on White
border Black on Black
background Black on Black
unselected White on Black

2815

The following table explains the use of letters inside the color string.
Note that the plus sign (+) means high intensity, the star (*) means
blink and that + and * can be allowed only to the first letter inside a

couple.
Color Letter Monochrome
Black N, Space Black
Blue B Underline
Green G White
Cyan BG White
Red R White
Magenta RB White
Brown GR White
White \WY% White
Gray N+ Black
Bright Blue | B+ Bright Underline
Bright Green | G+ Bright White
Bright Cyan | BG+ Bright White
Bright Red | R+ Bright White
Bright = Ma- RB+ Bright White
genta
Bright GR+ Bright White
Brown
Bright White | W+ Bright White
Black U Underline
E/lj\(ljzrse I Inverse Video
Blank X Blank

2816

SETVERB("CURSOR")

SETVERB ("CURSOR", [lCursor]) = [Previous

If ICursor 1s True, the cursor is showed, else it is hidden.

The starting value 1s True.

SETVERB("CONSOLE")

SETVERB ("CONSOLE", [lConsole]) = [IPrevious

If IConsole is True, the output of console commands is displayed on
the screen, else it is not.

The starting value 1s True.

SETVERB("ALTERNATE")

SETVERB ("ALTERNATE", [lAlternate]) = [lPrevious

If [Alternate is True, the output of console commands is send also
to a standard ASCII text file.

The starting value 1s False.

SETVERB(C"ALTFILE")

SETVERB("ALTFILE", [cAltemateFilename] , [lAdditive])

= cPrevious

2817

If SETVERB("ALTERNATE") 1s True, the output of the console is
send also to cAlternateFilename, a standard ASCII file.

If [Additive is True, the output is appended to the ASCII file if it
already exists, else it 1s erased first.

SETVERB("DEVICE")

SETVERB("DEVICE", [cDevice]) = cPrevious

cDevice 1s the name of the device where SAY () will display its out-
put.

The starting value is "SCREEN", the alternative is "PRINTER".
The recommended value 1s "SCREEN".

SETVERB("EXTRA")

SETVERB ("EXTRA", [lExtra]) = IPrevious

If [Extra is True, the output of console commands is send also to a
standard ASCII text file.

The starting value 1s False.

SETVERB("EXTRAFILE")

SETVERB ("EXTRAFILE", [cExtraFilename] , [lAdditive])
= cPrevious

It SETVERB("EXTRA") 1s True, the output of the console 1s send
also to cExtraFilename, a standard ASCII file.

2818

If IAdditive is True, the output is appended to the ASCII file if it
already exists, else it 1s erased first.

SETVERB("PRINTER")

SETVERB ("PRINTER", [lPrinter]) = [Previous

If [Printer is True, the output of console commands is also printed,
else it is not.

The starting value is False.

SETVERB("PRINTFILE")

SETVERB ("PRINTFILE", [cPrintFileName]) = cPrevious

cPrintFileName is the name of the printer peripheral name.

nn

The starting value is

SETVERB("MARGIN")

(null string).

SETVERB ("MARGIN", [nPageOﬁset]) = nPrevious

nPageOffset is the positive number of column to be used as a left
margin for all printer output.

The starting value is 0.

2819

SETVERB("BELL")

SETVERB ("BELL", [lBell]) = [Previous

If IBell is True, the sound of the bell is used to get the attention of
the user when some wrong actions are made.

The starting value 1s False.

SETVERB("CONFIRM")

SETVERB ("CONFIRM", [IConfirm]) = IPrevious

If IConfirm is False, the GET is simply terminated typing over the
end of the get field; in the other case (True), the GET is terminated
only pressing an "exit key". The starting value is True.

SETVERB("ESCAPE")

SETVERB ("ESCAPE", [lEscape]) = IPrevious

If [Escape is True, the [Esc] key is enabled to be a READ exit key,
in the other case not.

The starting value is True.

The recommended value i1s True.

2820

SETVERB('INSERT")

SETVERB("INSERT", [lInsert]) = [lPrevious

If lInsert is True, the data editing is in INSERT mode, in the other
case, 1t 1s in OVERWRITE mode.

The starting value is True.

SETVERBC'EXIT")

SETVERB("EXIT", [lExit]) = [Previous

If IExit is True, [Up] and [Down] key may be used as exit key when
the cursor is (respectively) on the first or on the last GET field. In
the other case not.

The starting value 1s False.

The recommended value 1s False.

SETVERB('INTENSITY")

SETVERB ("INTENSITY", [lntensity]) = IPrevious

If lIntensitiy 1s True, the display of standard and enhanced display
colors are enabled. In the other case, only standard colors are en-
abled.

The starting value is True.

The recommended value i1s True.

2821

SETVERB("SCOREBOARD")

SETVERB ("SCOREBOARD", [lScoreboard]) = IPrevious

If IScoreboard is True, the display of messages from READ() and
MEMOREAD() is allowed; in the order case not.

The starting value 1s False.

The recommended value 1s False: nB do not support scoreboard.

SETVERB("DELIMITERS")

SETVERB("DELIMITERS", [lDelimiters]) = [lPrevious

If IDelimiters is True, GET variables appear on the screen delimited
with the delimiter symbols. In the other case, GET variables are not
delimited this way, but only with the use of different colors.

The starting value is False.

The recommended value 1s False: the use of delimiters creates one
more trouble when designing a screen mask.

SETVERB("DELIMCHARS")

SETVERB ("DELIMCHARS", [cDelimterCharacters]) = cPrevious

cDelimterCharacters are the delimiter characters used to delimit a
GET field when SETVERB("DELIMITERS") is True.

n,.n

The starting value is "::".

2822

SETVERB("WRAP")

SETVERB ("WRAP", [lWrap]) = [Previous

If IWrap 1s True, the wrapping of the highlight in MENUSs should
be active, but this option is actually not active and all works as it 1s
False.

The starting value is False.

SETVERB("MESSAGE")

SETVERB ("MESSAGE", [nMessageRow]) = nPrevious

nMessageRow is the row number where the @..PROMPT message
line should appear on the screen. This option is not supported.

The starting value is O.

SETVERB("MCENTER")

SETVERB ("MCENTER", [IMessageCenter|) = IPrevious

If IMessageCenter is True, the @..PROMPT message line should
appear centered on the screen. This option is not supported.

The starting value is False.

2823

STRADDEXTENTIONQ

STRADDEXTENTION (cName, cExt) = cCompleteName

N the file name (with or without path) that is
civame probably without extention.
the extention that must be added to cName
cExt o
if 1t has not one.

This function check ¢Name for the presence of an extention. It it
has not one, cExt will be added.

STRCUTEXTENTIONQ

STRCUTEXTENTION (cName) = cName

the file name (with or without path) that is

cName probably with extention.

This function check ¢Name for the presence of an extention. It it
has one, the extention i1s removed.

STRDRIVEQ)

STRDRIVE (¢cName) = cDrive

the file name (with or without path) that

cName .)
contains the drive letter.

This function tries to extract the drive letter information from

2824

cName.

STREXTENTIONOQ)

STREXTENTION (cName) = cExtention

the file name (with or without path) that
contains an extention.

cName

This function tries to extract the extention information from c¢Name.

STRFILEQ)

STRFILE (¢cName) = cFileName

cName the file name with or without path.

This function tries to extract the file name without path from cName.

STRFILEFINDQ)

STRFILEFIND (c¢Name, cPath) = cFileName

cName the file name or pathname containing the
file name to search inside the cPath list.
a list of paths separated with semicolon
cPath (just like Dos does), where cFile should be
searched.

If your file 1s to be found on different possible positions, this func-

2825

tion search the first place where the file is found and returns a valid
pathname to that file.

STRGETLENQ

STRGETLEN (xExpr, cPicture) = nFieldLength

xExpr a generic expression.
cPicture the picture string.

This function returns the length of field when using xExpr with
cPicture.

STRLISTASARRAY()

STRLISTASARRAY (cList, [cDelimiter]) = alList

cList a character string containing a list sepa-
rated with cDelimiter .
.. the delimiter used to separate the elements
cDelimiter : . :
contained inside the list.

This function transform a character string list into an array.

STROCCURSQ

STROCCURS (cSearch, cTarget) = nOccurrence

cSearch the search string to find inside cTarget.
the string to be searched for the presence
clarget
of cSearch.

2826

This function returns the number of occurrence that c¢Search is con-
tained inside cTarget.

STRPARENT()

STRPARENT (cName) = cParentPath

cName the pathname.

This function tries to return a parent path from cName.

STRPATHO

STRPATH (c¢cName) = cPath

cName the pathname.

This function tries to extract the path from cName.

STRTEMPPATH()

STRTEMPPATH () = cTempPath

This function returns a temporary path searching for possible defini-
tions inside the environmental variables.

2827

STRXTOSTRINGQO

STRXTOSTRING (xVar, [cType]) = cTrasformed_to_string

Vi is the data of any type to be converted into
vvar string.
T is the type of the data contained inside
cType
xVar.

This function returns x Var transformed into a character string.

T1BO

TB ([nTop] [nLeft] , [nBottom] , [nRight] ,
[acCol] , [acColSayPic] ,

[acColTopSep |, [acColBodySep], [acColBotSep],
[acColHead | , [acColFoot] ,

[alColCalc] ,

[abColValid | ,

[abColMsg | ,
[
[
[
[
[
[

cColor] , [abColColors] ,

lButtons | aButtons]) = NIL

nlop, nleft, nBottom, nRight defines the screen area where
browse have to take place.

2828

is the columns array to be included into the

acCol
browse.
acColSayPic is the picture array.
acColTopSep is the top separation array: default is
chr(194)+chr(196).
is the body separation array: default is
acColBodySep chr(179).
is the bottom separation array: default is
acColBotSep chr(193)+chr(196p). ’
acColHead 1s the header array for every column.
acColFoot is the footer array for every column.
1s the array that identify the calculated col-
alColCalc umn (not editable). True (‘.T.’) means
calculated.
is the validation array that specify when a
abColValid field is properly filled. The condition must
be specified in code block format.
is the message array that permits to show
abColMsg information at the bottom of browse area.
The array must be composed with code
blocks which result with a character string.
cColor is the color string: it may be longer than
the usual 5 elements.
is the color code block array. The code
block receive as parameter the value con-
abColColors tained inside the field and must return an
array containing two numbers: they corre-
spond to the two color couple from c¢Color.
indicates the number of columns to be left
nFreeze :
frozen on the left side. .
IModify indicates whether the browse can modify

data.

2829

indicates whether the browse can delete
IDelete

and recall records.
IButtons if True, default buttons are displayed.
aButtons array of buttons.
aButtons[n][1] N the nth button row position;
aButtons|[n][2] N the nth button column position;
aButtons[n][3] C the nth button text;
aButtons|n][4] B the nth button code block.

This function, called without parameters, starts the browse of the
active alias, and if relations are established, the browse includes also
related data.

Please note that due to an unresolved problem, the field names
contained inside acCol should better contain also the alias
(ALIAS->FIELD_NAME). See also the examples.

TEXTO

TEXT (cText) = NIL

Shows the text contained into c7Text.

TGLINSERTO

TGLINSERT () = NIL

Toggle the global insert mode and the cursor shape.

2830

TIMEX2NQO

TIMEX2N ([nHH], [nMM], [nSS]) = nTime

nHH 1s the number of hours.
nMM 1S the number of minutes.
nSS 1s the number of seconds.

This function calculate the "time number" that 1s a number repre-

senting days and/or portion of a day: 1 1s 1 day or 24 hours, 0.5 is
12 hours, and so on.

TIMEN2HQ

TIMEN2H (nTime) = nHours

is the "time number" that is a number rep-

nTime resenting days and/or portion of a day: 1 is

1 day or 24 hours, 0.5 is 12 hours, and so
on.

This function returns the integer number of hours contained inside
nTime.

TIMEN2MOQ)

TIMEN2M (nTime) = nMinutes

2831

is the "time number" that is a number rep-
resenting days and/or portion of a day: 1 is
1 day or 24 hours, 0.5 is 12 hours, and so
on.

nTime

This function returns the integer number of minutes contained inside
nTime after subtracting the hours.

TIMEN2S0

TIMEN2S (nTime) = nSeconds

is the "time number" that is a number rep-
resenting days and/or portion of a day: 1 is
1 day or 24 hours, 0.5 is 12 hours, and so
on.

nTime

This function returns the number of seconds (with eventual deci-
mals) contained inside nTime after subtracting the hours and the
minutes.

TRUESETKEYQ

TRUESETLEY (nInkeyCode, bAction) = .T.

This function is equivalent to SETKEY () but it returns always ‘. T.’

2832

WAITFILEEVALQO

WAITFILEEVAL(IClose) = .T.

Shows a wait bar calling WAITPROGRESS() for operation on
records of a database.

If there is no index active, it 1s equivalent to WAITPRO-
GRES(RECNO()/LASTREC()).

1f an index 1is active, this cannot work, so an increment for each call
1s made: WAITPROGRES((nIncrement++)/LASTREC()).

This function must be closed calling it with the IClose parameter

to true (‘. T.’). This way, internal counters are closed and WAIT-
PROGRESS() is closed too.

WAITFORQ)

WAITFOR ([cMessage]) = NIL

Shows cMessage until it 1s called again. The wait window is closed
when called without parameter or with NIL.

WAITPROGRESS()

WAITPROGRESS ([nPercent]) = .T.

Shows a wait bar on the screen top depending on the value contained
into nPercent. nPercent starts form O and ends to 1 (100%). If a
value of one or more, or NIL is passed, the wait window is closed.

2833

Normal command substitution

Clipper works only with functions and commands that are converted
into function using the ‘STD.cH’. Here are described some com-
mand replacement that can be used also with nB macros.

6)

? [exp_list]

gout ([exp_list])

22 [exp_list]

ggout ([exp_list])

@BOX

@ nTop, nLeft, nBottom, nRight BOX cnBoxString [COLOR cColorString

]

dispbox (nTop, nLeft, nBottom, nRight, [anoxString] , [
cColorString])

@TO

@ nTop, nLeft TO nBottom, nRight DOUBLE [COLOR cColorString |

2834

dispbox (nTop, nLeft, nBottom, nRight, 2 [,cColorString])

@ nTop, nLeft TO nBottom, nRight [COLOR cColorString |

dispbox (nTop, nLeft, nBottom, nRight, 1 [,cColorString])

@ nTop, nLeft CLEAR [TO nBottom, nRight]

scroll ([nTop], [nLeft], [nBottom, nRight])

setpos (nRow, nCol)

@GET

@ nlop, nLeft GET Var [PICTURE cGetPicture| [COLOR cColorString |
[WHEN [PreExpression]
7 [VALID [PostExpression |

setpos (nTop, nlLeft)

2835

aadd (GetList, _GET_(Var, "Var", cGetPicture, [
{ || lPostExpression}] ,
— [{ | | [PreExpression }]) :display ()) atail (GetList) :colorDisp (¢Cc

@SAY

@ nTop, nLeft SAY exp [COLOR cColorString]

devpos (nTop, nLeft)

devout (exp [, cColorString])

@ nlop, nLeft SAY exp PICTURE cSayPicture [COLOR cColorString |

devpos (nTop, nLeft)

devoutpic (exp, cSayPicture, [cColorString])

APPEND

APPEND BLANK

dbappend ()

2836

CLEAR

CLEAR

Scroll ()

SetPos (0, 0)

ReadKill (.T.)

GetList := {}

CLEAR GETS

ReadKill (.T.)

GetList := {}

CLEAR SCREEN | CLS

Scroll ()

2837

SetPos (0, 0)

CLOSE

CLOSE

dbCloseArea ()

CLOSE idAlias

idAlias—> (dbCloseArea ())

CLOSE ALTERNATE

Set (19, "")

CLOSE DATABASES

dbCloseAll ()

CLOSE INDEXES

2838

dbClearIndex ()

COMMIT

COMMIT

dbCommitAll ()

COUNT

COUNT TO idVar [FOR lForCondition]
NEXT nNextRecords |
— [RECORD nRecord]

[REST] [ALL]

[WH ILE [WhileCondition] [

dbeval (

—nNextRecords ,

{| |idVar:=idVar+1},

nRecord, IRest)

{ | | IForCondition } ,

{ | | IWhileCondition } ,

Lo

DEFAULT

DEFAULT xVar TO xDefaultValue

DEFAULT (@xVar, xDefaultValue)

= xVar

DELETE

DELETE

2839

dbDelete ()

DELETE [FOR lForCondition]
NEXT nNextRecords |

%[RECORD nRecord] [REST]

[WH ILE [WhileCondition] [

[ALL]

dbeval ({| |dbDelete ()},

“—nNextRecords, nRecord,

{ | | IForCondition}, {| |IWhileCondition}, .

[Rest)

DELETE FILE xcFile

ferase (cFile)
EJECT

EJECT

ggout (chr(13))
ERASE

ERASE xcFile

ferase (cFile)

2840

FIND

FIND xcSearchString

dbSeek (cSearchString)

GO

GO [TO] nRecord

dbgoto (nRecord)

GO [To] BOTTOM

dbGoBottom ()

GO [To] TOP

dbgotop ()

INDEX ON

INDEX ON expKey TO xcIndexName [UNIQUE] [FOR [ForCondition] (-
— [WHILE lWhileCondition] [[EVAL lEvalCondition] [EVERY nRecords
]] [ASCENDING | DESCENDING]

2841

ordCondSet ([cForCondition] , [bForCondition] , [bWhileCondition

I
— [bEvalCondition] , [nRecords] , RECNO(), , , , IDescending)

ordCreate (cIndexName, , cExpKey, bExpKey, [Unique)

READ

READ

ReadModal (GetList)

GetlList := {}

READ SAVE

ReadModal (GetList)

RECALL

RECALL

dbRecall ()

2842

RECALL [FOR lForCondition] [WHILE lWhileCondition]
NEXT nNextRecords |
‘—>[RECORD nRecord] [REST] [ALL]

[

“—nNextRecords, nRecord, IRest)

dbeval ({||dbRecall ()}, {| |lForCondition}, {| |IWhileCondition}, .

REINDEX

REINDEX [EVAL lEvalCondition] [EVERY nRecords]

ordCondSet (, , , , [bEvalCondition], [nRecords]

ordListRebuild()

RENAME

RENAME xcOldFile TO xcNewcFile

frename (cOldFile, cNewcFile)

2843

REPLACE

REPLACE idFieldl WITH expl [, idField2 WITH exp2..] (-
— [FOR lForCondition] [WHILE lWhileCondition] [NEXT nNextRecords]

P
‘—>[RECORD nRecord] [REST] [ALL]

dbeval ({|| idFieldl := expl [, idField2 := exp2...] b, oo
—{ | |IForCondition}, { | |IWhileCondition}, nNextRecords,b .
“—nRecord, I[Rest)

REPLACE idFieldl WITH expl

idFieldl := expl

RESTORE

RESTORE SCREEN FROM cScreen

restscreen(0, 0, Maxrow (), Maxcol (), c¢Screen)

SAVE

SAVE SCREEN TO cScreen

cScreen := savescreen(0, 0, maxrow(), maxcol ())

2844

SEEK

SEEK expSearch [SOFTSEEK]

dbSeek (expSearch [, lSoftSeek])

SELECT

SELECT xnWorkArea | idAlias

dbSelectArea (nWorkArea | cldAlias)

SET

SET ALTERNATE TO xcFile [ADDITIVE]

Set (19, cFile, 1Additive)

SET ALTERNATE ON | OFF | xlToggle

Set (18, "ON" | "OFF" | IToggle)

SET BELL ON | OFF | xIToggle

Set (26, "ON" | "OFF" | IToggle)

2845

SET COLOR | COLOUR TO (cColorString)

SetColor (cColorString)

SET CONFIRM ON | OFF | xlToggle

Set (27, "ON" | "OFF" | IToggle)

SET CONSOLE ON | OFF | xlToggle

Set(17, "ON" | "OFF" | IToggle)

SET CURSOR ON | OFF | xIToggle

SetCursor(1 | 0 | iif (lToggle, 1, 0))

SET DATE FORMAT [TO] cDateFormat

Set (4, cDateFormat)

SET DECIMALS TO

2846

Set(3, 0)

SET DECIMALS TO nDecimals

Set (3, nDecimals)

SET DEFAULT TO

Set (7, UL

SET DEFAULT TO xcPathspec

Set (7, cPathspec)

SET DELETED ON | OFF | xIToggle

Set (11, "ON" | "OFF" | IToggle)

SET DELIMITERS ON | OFF | xlToggle

Set (33, "ON" | "OFF" | IToggle)

28477

SET DELIMITERS TO [DEFAULT]

Set(34, "::")

SET DELIMITERS TO cDelimiters

Set (34, cDelimiters)

SET DEVICE TO SCREEN | PRINTER

Set (20, "SCREEN" | "PRINTER")

SET EPOCH TO nYear

Set (5, nYear)

SET ESCAPE ON | OFF | xIToggle

Set (28, "ON" | "OFE" | IToggle)

SET EXACT ON | OFF | xlToggle

2848

Set(1, "ON" | "OFFE" | [Toggle)

SET EXCLUSIVE ON | OFF | xlToggle

Set (8, "ON" | "OFF" | IToggle)

SET FILTER TO

dbclearfilter ()

SET FILTER TO ICondition

dbsetfilter (bCondition, cCondition)

SET FIXED ON | OFF | xlToggle

Set (2, "ON" | "OFF" | IToggle)

SET INDEX TO [xclndex [, xcIndex] ...]]

2849

ordListClear ()
ordListAdd (cIndex)
ordListAdd (cIndexl)

SET INTENSITY ON | OFF | x1Toggle

Set (31, "ON" | "OFF" | 1Toggle)

SET KEY nlnkeyCode [TO]

SetKey (nInkeyCode, NIL)

SET KEY nlnkeyCode TO [idProcedure]

SetKey (nInkeyCode, { |p, 1, v| idProcedure (p,

SET MARGIN TO

Set (25, 0)

SET MARGIN TO [nPageOffset]

2850

Set (25, nPageOlffset)

SET MESSAGE TO

Set(36, 0)

Set(37, .F.)

SET MESSAGE TO [nRow [CENTER CENTRE]]

Set (36, nRow)

Set (37, lCenter)

SET ORDER TO [nIndex]

ordSetFocus (nlIndex)

SET PATH TO

set(6, "")

2851

SET PATH TO [xcPathspec [, cPathspecl.. |]

Set (6, cPathspec [, cPathspecl.. |)

SET PRINTER ON | OFF | x1Toggle

Set (23, "ON" | "OFF" | 1Toggle)

SET PRINTER TO

Set (24, "")

SET PRINTER TO [chevice|chile [ADDITIVE]]

Set (24, cDevice|cFile, 1Additive)

SET RELATION TO

dbclearrelation ()

2852

SET RELATION TO [expKeyl INTO xcAliasl |

[, [TO] expKey2 INTO xcAlias2.]
[ADDITIVE]

if !lAdditive
dbClearRel ()
end
dbSetRelation (cAliasl, {|| expKeyl}, ["epreyI"])
dbSetRelation (cAlias2, {|| expKey2}, ["epreyI"])

SET SCOREBOARD ON | OFF | x1Toggle

Set (32, "ON" | "OFF" | 1Toggle)

SET SOFTSEEK ON | OFF | x1Toggle

Set (9, "ON" | "OFF" | 1Toggle)

SET TYPEAHEAD TO nKeyboardSise

Set (14, nKeyboardSise)

SET UNIQUE ON | OFF | x1Toggle

2853

Set (10, "ON" | "OFF" | 1Toggle)

SET WRAP ON | OFF | x1Toggle

Set (35, "ON" | "OFF" | 1Toggle)

SKIP

SKIP [nRecords] [AL IAS idAlias | nWorkArea]

[idAlias | nWorkArea —>] (dbSkip([nRecords]))

STORE

STORE value TO variable

variable := value

SUM

SUM nExpl [, nEpo...] TO idVarl [, idVarZ...] [FOR lForCondition]

P
— [WHI LE [WhileCondition] [NEXT nNextRecords] [RECORD nRecord]

[REST] [ALL]

2854

dbeval ({| |idVarl : =idVarl +nExpl [, idVar2:=idVar2+nExp2...] b, oo
—{ | |lForCondition}, {| |IWhileCondition}, nNextRecords, nRecord, IRest

UNLOCK

UNLOCK

dbUnlock ()

UNLOCK ALL

dbUnlockAll ()

USE

USE

dbclosearea ()

USE [xcDatabase |

‘_>[INDEX xclndex1 [, chndexZ...] [ALIAS chlias] [EXCLUSIVE
SHARED] -

7 [NEW] [READONLY]| [VIA cDriver]]

2855

dbUseArea ([lNewArea] , [cDriver] , cDatabase, [cAlias] , [lShared
]+, [IReadOnly])

[dbSetIndex (clndexl)]

[dbSetIndex (clndex2)]

NB command substitution functions

Inside nB there are many functions made only in substitution to other
Clipper commands.

GET

@ nTop, nlLeft GET Var
[PICTURE cGetPicture]

COLOR cColorString |

[
[WHEN [PreExpression |
[VALID [PostExpression |

Get (QaGetList,
[nTop]|, [nLeft],
{ Ix| iif(pcount () > 0, Var := x, Var) }
[cGetPicture] , [cColorString] ,
[bPreExpression] , [bValid])

is the get list array that will be increased

aGetList with this get().

2856

SAY

@ nTop, nLeft SAY exp

PICTURE cSayPicture
[COLOR cColorString |

Say (nTop, nLeft, cVar, [cSayPicture] , [cColorString])

APPEND FROM

APPEND FROM xcFile
FIELDS idField_list]

scope |

FOR [Condition]

[
[
[WHILE [Condition]
[
[V IA xcDriver]

dbApp (cFileName, [acFields] ,
bForCondition] , [bWhileCondition] ,

nNextRecords] ,

2857

APPEND FROM xcFile
[FIELDS idField_list]
[scope]
[WH ILE [Condition]

[FOR [Condition]
DELIMITED xcDelimiter

dbDelim(.f., cFileName, [cDelimiter] , [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

APPEND FROM xcFile
[FIELDS idField_list |
[scope]
[WHILE [Condition]
[FOR ICondition]
SDF

dbSDF (.f., cFileName, [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

CONTINUE

CONTINUE

2858

dbContinue ()

COPY

COPY FILE xcSourceFile TO xcTargetFile | xcDevice

CopyFile (cSourceFile, cTargetFile |cDevice)

COPY STRUCTURE [FIELDS idField_list]
TO xcDatabase

dbCopyStruct (cDatabase, [acFields])

COPY STRUCTURE EXTENDED
TO xcExtendedDatabase

dbCopyXStruct (cExtendedDatabase)

COPY TO xcFile
FIELDS idField list]

scope |

FOR [Condition]

[
[
[WHILE [Condition]
[
[V IA xcDriver]

2859

dbCopy (cFileName, [acFields] ,
[bForCondttwn] , [bWhileCondition] ,
[nNextRecords] ,
[nRecord | ,
[[Rest] ,

[

cDriver]

COPY TO xcFile
[FIELDS idField_list |
[scope |
[WHILE [Condition]

[FOR [Condition]
DELIMITED xcDelimiter

dbDelim(.t., cFileName, [cDelimiter] , [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

COPY TO xcFile
[FIELDS idField_list |
[scope]
[WHILE [Condition]
[FOR [Condition]
SDF

2860

dbSDF (.t., cFileName, [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

CREATE

CREATE xcDatabase
FROM xcExtendedDatabase
[NEW]
[ALIAS cAlias |
[VIA cDriver]

dbOldCreate (cDatabase, cExtendedDatabase,
[cDriver] , [lNew] , [cAlias])

JOIN

JOIN WITH xcAlias TO xcDatabase
[FOR [lCondition] [FIELDS idField list]

dbJoin (cAlias, cDatabase,
[acF ields] , [bForCondition])

KEYBOARD

KEYBOARD c¢String

Keyboard([eString]) = NIL

2861

LABEL FORM

LABEIL FORM xcLabel
TO PRINTER]

% TO FILE xcFile]
[NOCONSOLE |

[scope |

[WHILE [Condition]
[
[

FOR [Condition]
SAMPLE]

dbLabelForm(cLabel, [lToPrinter] , [cFile] ,

[lNoConsole] , [bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest] , [lSample])

LIST

LIST exp_list
[To PRINTER]

TO FILE chile]

scope |

FOR [Condition]

[
[
[WHILE ICondition]
[
[OFF]

2862

dbList ([lToDisplay |, abListColumns,
[lAll],
bForCondition] , [bWhileCondition] ,

[
[nNextRecords] , [nRecord] , [lRest] ,
[lToPrinter] , [cF ileName])

LOCATE

LOCATE [scope]| FOR ICondition
[WHILE lCondition]

dbLocate ([bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

PACK

PACK

dbPack ()

PUBLIC

PUBLIC idMemvar

MemPublic (cMemvarName | acMemvarNames)

2863

QUIT

QUIT

Quit ()

RELEASE

RELEASE idMemvar

MemRelease (cMemvarName | acMemvarNames)

REPORT FORM

REPORT FORM xcReport
TO PRINTER]

% TO FILE xcFile]
[NOCONSOLE]

[scope |

[WHILE [Condition]
[FOR ICondition |

[

[

PLAIN | HEADING cHeading |
NOEJECT] [SUMMARY]

2864

RF (cForm,
[bForCondition] , [bWhileCondition] ,

[nNext] , [nRecord] , [lRest] , [lPlain] ,
[cbHeading | , [IBeforeEject]| , [IlSummary],
[lDate] , [acExtra]) = NIL

RESTORE FROM

RESTORE FROM xcMemFile [ADDITIVE]

MemRestore (cMemFileName, [[Additive])

RUN

RUN xcCommandLine

Run (cCommand)

SAVE TO

SAVE TO xcMemkFile
[ALL [LIKEIEXCEPT skeleton]]

MemSave (cMemFileName , [cSkeleton] , [lLike])

SET FUNCTION

SET FUNCTION nFunctionKey TO cString

2865

SetFunction (nFunctionKey, cString)

SORT

SORT TO xcDatabase
ON idFieldl [/[A|D] [C]]
[, idField2 [/[AID] [C]] -]
[scope]
[WHILE [Condition]
[FOR lCondition]

dbSort (cDatabase, [acFields] ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord] , [lRest])

TOTAL

TOTAL ON expKey
[FIELDS idField list] TO xcDatabase
[scope]
[WHILE [Condition]
[FOR ICondition |

dbTotal (cDatabase, bKey, [acFields ,

[bForCondition] , [bWhileCondition] ,
[nNextRecords] , [nRecord]] , [lRest])

2866

UPDATE

UPDATE FROM xcAlias
ON expKey [RANDOM]

REPLACE idFieldl WITH exp
[, idField2 WITH exp -]

dbUpdate (cAlias, bKey, [lRandom] , [bReplacement])

Example:
dbUpdate ("INVOICE", {|| LAST}, .T.,;
{I| FIELD->TOTAL1 := INVOICE->SUMI, ;
FIELD->TOTAL2 := INVOICE->SUM2 })
ZAP
dbzap ()

RPT: tThe nB print function

The function RPT() helps to print ASCII file containing Memvars,
Fields and print commands. RPT() is accessible from the DOC()

menu.
Memvars and fields

As usual with standard word processors, variables are written delim-
ited with "<" (Alt+174) and ">" (Alt+175).

2867

Inside these delimiters can find place character Memvars, character
Fields and functions giving a character result.

The RPT() function generates a public variable n_Lines that contains
the available lines inside the actual sheet. Every time a line 1s writ-
ten, this value is reduced, until a new page is reached and then it will
start again from the maximum value. It is useful to read this variable
to determinate if there is enough space or it is better to change page.

Commands

The function RPT() recognise some print commands. These com-
mands starts with the asterisk (*) symbol. This means that "*" is a
print command prefix.

It follows the command syntax.

*COMMAND

* COMMAND
cStatement

cStatement

*END

The lines contained inside *COMMAND - *END are executed
with the nB macro interpreter.

*DBSKIP

*DBSKIP [nSkip |

It Executes a dbskip() on the active alias.

2868

*FOOT

*FO0T
cFooter

cFooter

*END

The lines contained inside *FOQOT - *END are printed each time
at the bottom of pages.

*HEAD

*HEAD
cHeader

cHeader

*END

The lines contained inside *HEAD - *END are printed each time
at the top of pages.

*IF

*TIF lCondition

*END

If the condition ICondition is true, the lines contained inside *IF
- *END are printed.

2869

*INSERT

*INSERT cFileName

Includes the text contained into the file cFileName.
*LEFT

*LEFT nLeftBorder

The nLeftBorder is the number of column to be left blank as a
left border.

*LPP

+LPP nLinesPerPage

It determinates the page length expressed in lines. After printing
the nLinesPerPageth line, a form feed 1s sent.

*NEED

*NEED nLinesNeeded

If the available lines are less then nLinesNeeded, the follwing
text will be printed on the next page.

*PA

*PA

Jumps to a new page.

2870

*REM

*REM | *COMMENT [comment_line]

It adds a comment that will not be printed.
*WHILE

*WHILE I[Condition

*END

The lines contained inside *WHILE - *END are printed as long
as ICondition is true.

Examples

It follows some example of text to be printed with the RPT() func-
tion. Example’s lines are numbered. Line numbers must not be part
of a real RPT text files.

PAGE DEFINITION

Margins are defined with *HEAD, *FOOT and *LEFT com-
mands. In the following example is defined:

Top 2 lines;
Bottom 2 lines;

Left 10 characters.

The right margin is not defined as it depends on the lines length
that will be printed.

2871

The only considered page dimension is the height, *LPP (lines
per page):

Page height 66 lines.

Here starts the example:

001 *1lpp 66

002 «xhead

003

004

005 *end

006 «foot

007

008

009 *end

010 =*left 10

011 ... text text text
012 ... test text text

At line 001 1s defined the page height in lines. At line 002 1s
defined the header; it contains two empty lines (003 and 004)
which will be printed at the top of every page. At line 006 starts
the footer definition that contains two empty lines (007 and 008)
that will be printed at the end of every page. Atline 010 1s defined
the space on the left that will be added to every line printed. From
line O11 starts the normal text.

HEADER AND FOOTER

The commands *HEAD and *FOOT are used to define the top
and bottom border if they contains empty lines, it these lines are
not empty, they became real head and foot.

The dimensions are as it follows:

2872

Top 6 lines (should be one inch);

Bottom 6 lines;
Left 10 characters (should be an inch).
Page height 66 lines (should be 11 inch).

At position 0.5 in (after 3 lines) a one line header appears.

001 *1lpp 66

002 «xhead

003

004

005

006 —————————————————— MYFILE.TXT -——————————————————
007

008

009 xend

010 «foot

011

012

013

014

015

0l6

017 *end

018 «*left 10

019 ... text text text
020 ... test text text

At line 006 (the fourth header line) a text appears. It will be
printed on every page at the absolute fourth page line.
CODE INSERTION

Pieces of code can be inserted inside *COMMAND - *END. It
can be useful to make complicated reports.

The following example declares a public variable used to number
pages.

2873

001 *command

002 mempublic ("PageNo")
003 PageNo := 0

004 xend

005 *1lpp 66

006 xhead

007 *command

008 PageNo := PageNo +1
009 *end

010

011

012 *end

013 «foot

014

015 Page <PageNo>
0l6

017 *end

018 *left 10

019 ... text text text
020 ... test text text

At line 001 starts a *COMMAND definition: lines 002 and 003
will be interpreted from the function EX(), the nB interpreter.
These lines define a public variable and initialize it at 0. This
variable will be use to count pages.

At line 007, inside the header (nested), start another *COM-
MAND definition that contains an increment for the "PageNo"
variable. As the header is read and "executed" for every new
page, and that before the footer, the variable "PageNo" will con-
tain the right page number.

At line 015, inside the footer, a reference to "PageNo" appears.
Here will be printed the page number.

A more complicated example can be found in ‘ADDRESS.TXT’
the RPT text file used for the ADDRESS.& macro examples.

2874

How can ...

nB 1s a little bit complicated as it may do many things. Here are

some examples.

Create a UDF function

UDF means User Defined Function. Inside nB there isn’t the
possibility to create functions, but there is an alternative: code

blocks.
Create a big code block

A code block cannot be longer than 254 characters, as any other

istruction inside nB.

So, there 1s no way to make a bigger code block, but a code block

can call another code block, and so on. For example:

mempublic({ "first", "second", "third" })
first := {|| eval(second, "hello") }
second := {Ix| eval(third, x) }

third := {Ix| alertbox(x) }

eval (first)

This stupid example simply will show the alert box containing

the word "hello".

The source files

The nB source is composed of four files:

‘NB.PRG’
the nB menu.

The main source file containing essentially

‘REQUEST.PRG’]
functions.

Contains a link to all Clipper standard

‘STANDARD.PRG’)
fions.

Contains the most important standard func-

2875

Contains some extra function not abso-

‘EXTRA.PRG’ . .
lutely necessary during macro execution.

The file ‘REQUEST.PRG’ source file generates some warnings be-
cause not all functions listed there are directly called form nB. Don’t
worry about that warning message.

Different ‘.RMK’ (rmake) files are included to compile nB differ-
ently, including/excluding some program parts, for example to ob-
tain a runtime executor.

I This is the original documentation of nanoBase 1997, with
minor modifications, that appeared originally at ‘http://www.
geocities.com/SiliconValley/7737/nb.htm’.

2876

	u137 nanoBase 1997 user manual
	u2.1 Dos xBase
	i137.1.1 .DBF files
	i137.1.2 Index files
	i137.1.3 Relations

	u2.2 Composition
	u2.3 How to use nB
	u2.4 Status line
	u2.5 The dot line
	u2.6 The menu system
	i137.6.1 Menu File
	i137.6.2 Menu Edit
	i137.6.3 Menu Report
	i137.6.4 Menu HTF
	i137.6.5 Menu Macro
	i137.6.6 Menu Info
	i137.6.7 Menu Doc

	u2.7 The text editor DOC()
	u2.8 The help text file
	u2.9 Macro
	i137.9.1 Macro statements
	i137.9.2 Variable declaration
	i137.9.3 Macro structure
	i137.9.4 Macro comments
	i137.9.5 Macro long lines split
	i137.9.6 The macro recorder

	u2.10 Data types
	i137.10.1 Character
	i137.10.2 Memo
	i137.10.3 Date
	i137.10.4 Numeric
	i137.10.5 Logical
	i137.10.6 NIL
	i137.10.7 Array
	i137.10.8 Code block

	u2.11 Operators
	u2.12 Delimiters
	u2.13 Code blocks
	u2.14 Standard functions
	i137.14.1 AADD()
	i137.14.2 ABS()
	i137.14.3 ACLONE()
	i137.14.4 ACOPY()
	i137.14.5 ADEL()
	i137.14.6 AEVAL()
	i137.14.7 AFILL()
	i137.14.8 AINS()
	i137.14.9 ALERT()
	i137.14.10 ALIAS()
	i137.14.11 ALLTRIM()
	i137.14.12 ARRAY()
	i137.14.13 ASC()
	i137.14.14 ASCAN()
	i137.14.15 ASIZE()
	i137.14.16 ASORT()
	i137.14.17 AT()
	i137.14.18 ATAIL()
	i137.14.19 BIN2I()
	i137.14.20 BIN2L()
	i137.14.21 BIN2W()
	i137.14.22 BOF()
	i137.14.23 CDOW()
	i137.14.24 CHR()
	i137.14.25 CMONTH()
	i137.14.26 COL()
	i137.14.27 COLORSELECT()
	i137.14.28 CTOD()
	i137.14.29 CURDIR()
	i137.14.30 DATE()
	i137.14.31 DAY()
	i137.14.32 DBAPPEND()
	i137.14.33 DBCLEARFILTER()
	i137.14.34 DBCLEARINDEX()
	i137.14.35 DBCLEARRELATION()
	i137.14.36 DBCLOSEALL()
	i137.14.37 DBCLOSEAREA()
	i137.14.38 DBCOMMIT()
	i137.14.39 DBCOMMITALL()
	i137.14.40 DBCREATE()
	i137.14.41 DBCREATEINDEX()
	i137.14.42 DBDELETE()
	i137.14.43 DBEVAL()
	i137.14.44 DBFILTER()
	i137.14.45 DBGOBOTTOM()
	i137.14.46 DBGOTO()
	i137.14.47 DBGOTOP()
	i137.14.48 DBRECALL()
	i137.14.49 DBREINDEX()
	i137.14.50 DBRELATION()
	i137.14.51 DBRLOCK()
	i137.14.52 DBRLOCKLIST()
	i137.14.53 DBRSELECT()
	i137.14.54 DBRUNLOCK()
	i137.14.55 DBSEEK()
	i137.14.56 DBSELECTAREA()
	i137.14.57 DBSETDRIVER()
	i137.14.58 DBSETFILTER()
	i137.14.59 DBSETINDEX()
	i137.14.60 DBSETORDER()
	i137.14.61 DBSETRELATION()
	i137.14.62 DBSKIP()
	i137.14.63 DBSTRUCT()
	i137.14.64 DBUNLOCK()
	i137.14.65 DBUNLOCKALL()
	i137.14.66 DBUSEAREA()
	i137.14.67 DBDELETE()
	i137.14.68 DESCEND()
	i137.14.69 DEVOUT()
	i137.14.70 DEVOUTPICT()
	i137.14.71 DEVPOS()
	i137.14.72 DIRECTORY()
	i137.14.73 DISKSPACE()
	i137.14.74 DISPBOX()
	i137.14.75 DISPOUT()
	i137.14.76 DOW()
	i137.14.77 DTOC()
	i137.14.78 DTOS()
	i137.14.79 EMPTY()
	i137.14.80 EOF()
	i137.14.81 EVAL()
	i137.14.82 EXP()
	i137.14.83 FCLOSE()
	i137.14.84 FCOUNT()
	i137.14.85 FCREATE()
	i137.14.86 FERASE()
	i137.14.87 FERROR()
	i137.14.88 FIELDBLOCK()
	i137.14.89 FIELDGET()
	i137.14.90 FIELDNAME()
	i137.14.91 FIELDPOS()
	i137.14.92 FIELDPUT()
	i137.14.93 FIELDWBLOCK()
	i137.14.94 FILE()
	i137.14.95 FLOCK()
	i137.14.96 FOPEN()
	i137.14.97 FOUND()
	i137.14.98 FREAD()
	i137.14.99 FREADSTR()
	i137.14.100 FRENAME()
	i137.14.101 FSEEK()
	i137.14.102 FWRITE()
	i137.14.103 GETENV()
	i137.14.104 HARDCR()
	i137.14.105 HEADER()
	i137.14.106 I2BIN()
	i137.14.107 IF()
	i137.14.108 INDEXEXT()
	i137.14.109 INDEXKEY()
	i137.14.110 INDEXORD()
	i137.14.111 INKEY()
	i137.14.112 INT()
	i137.14.113 ISALPHA()
	i137.14.114 ISCOLOR()
	i137.14.115 ISDIGIT()
	i137.14.116 ISLOWER()
	i137.14.117 ISPRINTER()
	i137.14.118 ISUPPER()
	i137.14.119 L2BIN()
	i137.14.120 LASTKEY()
	i137.14.121 LASTREC()
	i137.14.122 LEFT()
	i137.14.123 LEN()
	i137.14.124 LOG()
	i137.14.125 LOWER()
	i137.14.126 LTRIM()
	i137.14.127 LUPDATE()
	i137.14.128 MAX()
	i137.14.129 MAXCOL()
	i137.14.130 MAXROW()
	i137.14.131 MEMOEDIT()
	i137.14.132 MEMOLINE()
	i137.14.133 MEMOREAD()
	i137.14.134 MEMORY()
	i137.14.135 MEMOTRAN()
	i137.14.136 MEMOWRIT()
	i137.14.137 MEMVARBLOCK()
	i137.14.138 MIN()
	i137.14.139 MLCOUNT()
	i137.14.140 MLCTOPOS()
	i137.14.141 MLPOS()
	i137.14.142 MONTH()
	i137.14.143 MPOSTOLC()
	i137.14.144 NETERR()
	i137.14.145 NETNAME()
	i137.14.146 NEXTKEY()
	i137.14.147 NOSNOW()
	i137.14.148 ORDBAGEXT()
	i137.14.149 ORDBAGNAME()
	i137.14.150 ORDCREATE()
	i137.14.151 ORDDESTROY()
	i137.14.152 ORDFOR()
	i137.14.153 ORDKEY()
	i137.14.154 ORDLISTADD()
	i137.14.155 ORDLISTCLEAR()
	i137.14.156 ORDLISTREBUILD()
	i137.14.157 ORDNAME()
	i137.14.158 ORDNUMBER()
	i137.14.159 ORDSETFOCUS()
	i137.14.160 OS()
	i137.14.161 OUTERR()
	i137.14.162 OUTSTD()
	i137.14.163 PAD?()
	i137.14.164 PCOL()
	i137.14.165 PROW()
	i137.14.166 QOUT()
	i137.14.167 RAT()
	i137.14.168 RDDLIST()
	i137.14.169 RDDNAME()
	i137.14.170 RDDSETDEFAULT()
	i137.14.171 READINSERT()
	i137.14.172 READMODAL()
	i137.14.173 READVAR()
	i137.14.174 RECNO()
	i137.14.175 RECSIZE()
	i137.14.176 REPLICATE()
	i137.14.177 RESTSCREEN()
	i137.14.178 RIGHT()
	i137.14.179 RLOCK()
	i137.14.180 ROUND()
	i137.14.181 ROW()
	i137.14.182 RTRIM()
	i137.14.183 SAVESCREEN()
	i137.14.184 SCROLL()
	i137.14.185 SECONDS()
	i137.14.186 SELECT()
	i137.14.187 SET()
	i137.14.188 SETBLINK()
	i137.14.189 SETCANCEL()
	i137.14.190 SETCOLOR()
	i137.14.191 SETCURSOR()
	i137.14.192 SETKEY()
	i137.14.193 SETMODE()
	i137.14.194 SETPOS()
	i137.14.195 SETPRC()
	i137.14.196 SOUNDEX()
	i137.14.197 SPACE()
	i137.14.198 SQRT()
	i137.14.199 STR()
	i137.14.200 STRTRAN()
	i137.14.201 STUFF()
	i137.14.202 SUBSTR()
	i137.14.203 TIME()
	i137.14.204 TONE()
	i137.14.205 TRANSFORM()
	i137.14.206 TYPE()
	i137.14.207 UPDATED()
	i137.14.208 UPPER()
	i137.14.209 USED()
	i137.14.210 VAL()
	i137.14.211 VALTYPE()
	i137.14.212 YEAR()

	u2.15 nB functions
	i137.15.1 ACCEPT()
	i137.15.2 ACHOICE()
	i137.15.3 ACHOICEWINDOW()
	i137.15.4 ALERTBOX()
	i137.15.5 ATB()
	i137.15.6 BCOMPILE()
	i137.15.7 BUTTON()
	i137.15.8 COLORARRAY()
	i137.15.9 COORDINATE()
	i137.15.10 COPYFILE()
	i137.15.11 DBAPP()
	i137.15.12 DBCLOSE()
	i137.15.13 DBCONTINUE()
	i137.15.14 DBCOPY()
	i137.15.15 DBCOPYSTRUCT()
	i137.15.16 DBCOPYXSTRUCT()
	i137.15.17 DBDELIM()
	i137.15.18 DBISTATUS()
	i137.15.19 DBISTRUCTURE()
	i137.15.20 DBJOIN()
	i137.15.21 DBLABELFORM()
	i137.15.22 DBLIST()
	i137.15.23 DBLOCATE()
	i137.15.24 DBOLDCREATE()
	i137.15.25 DBPACK()
	i137.15.26 DBSDF()
	i137.15.27 DBSORT()
	i137.15.28 DBTOTAL()
	i137.15.29 DBUPDATE()
	i137.15.30 DBZAP()
	i137.15.31 DISPBOXCOLOR()
	i137.15.32 DISPBOXSHADOW()
	i137.15.33 DIR()
	i137.15.34 DOC()
	i137.15.35 DOTLINE()
	i137.15.36 DTEMONTH()
	i137.15.37 DTEWEEK()
	i137.15.38 EX()
	i137.15.39 GET()
	i137.15.40 GVADD()
	i137.15.41 GVDEFAULT()
	i137.15.42 GVFILEDIR()
	i137.15.43 GVFILEEXIST()
	i137.15.44 GVFILEEXTENTION()
	i137.15.45 GVSUBST()
	i137.15.46 HTF()
	i137.15.47 ISFILE()
	i137.15.48 ISWILD()
	i137.15.49 ISMEMVAR()
	i137.15.50 ISCONSOLEON()
	i137.15.51 ISPRINTERON()
	i137.15.52 KEYBOARD()
	i137.15.53 LISTWINDOW()
	i137.15.54 MEMOWINDOW()
	i137.15.55 MEMPUBLIC()
	i137.15.56 MEMRELEASE()
	i137.15.57 MEMRESTORE()
	i137.15.58 MEMSAVE()
	i137.15.59 MENUPROMPT()
	i137.15.60 MENUTO()
	i137.15.61 MESSAGELINE()
	i137.15.62 MOUSESCRSAVE()
	i137.15.63 MOUSESCRRESTORE()
	i137.15.64 PICCHRMAX()
	i137.15.65 QUIT()
	i137.15.66 READ()
	i137.15.67 RF()
	i137.15.68 RPT()
	i137.15.69 RPTMANY()
	i137.15.70 RPTTRANSLATE()
	i137.15.71 RUN()
	i137.15.72 SAY()
	i137.15.73 SETCOLORSTANDARD()
	i137.15.74 SETFUNCTION()
	i137.15.75 SETMOUSE()
	i137.15.76 SETOUTPUT()
	i137.15.77 SETRPTEJECT()
	i137.15.78 SETRPTLINES()
	i137.15.79 SETVERB()
	i137.15.80 SETVERB(.EXACT.) (obsolete)
	i137.15.81 SETVERB(.FIXED.)
	i137.15.82 SETVERB(.DECIMALS.)
	i137.15.83 SETVERB(.DATEFORMAT.)
	i137.15.84 SETVERB(.EPOCH.)
	i137.15.85 SETVERB(.PATH.)
	i137.15.86 SETVERB(.DEFAULT.)
	i137.15.87 SETVERB(.EXCLUSIVE.)
	i137.15.88 SETVERB(.SOFTSEEK.)
	i137.15.89 SETVERB(.UNIQUE.) (obsolete)
	i137.15.90 SETVERB(.DELETED.)
	i137.15.91 SETVERB(.CANCEL.)
	i137.15.92 SETVERB(.TYPEAHEAD.)
	i137.15.93 SETVERB(.COLOR.)
	i137.15.94 SETVERB(.CURSOR.)
	i137.15.95 SETVERB(.CONSOLE.)
	i137.15.96 SETVERB(.ALTERNATE.)
	i137.15.97 SETVERB(.ALTFILE.)
	i137.15.98 SETVERB(.DEVICE.)
	i137.15.99 SETVERB(.EXTRA.)
	i137.15.100 SETVERB(.EXTRAFILE.)
	i137.15.101 SETVERB(.PRINTER.)
	i137.15.102 SETVERB(.PRINTFILE.)
	i137.15.103 SETVERB(.MARGIN.)
	i137.15.104 SETVERB(.BELL.)
	i137.15.105 SETVERB(.CONFIRM.)
	i137.15.106 SETVERB(.ESCAPE.)
	i137.15.107 SETVERB(.INSERT.)
	i137.15.108 SETVERB(.EXIT.)
	i137.15.109 SETVERB(.INTENSITY.)
	i137.15.110 SETVERB(.SCOREBOARD.)
	i137.15.111 SETVERB(.DELIMITERS.)
	i137.15.112 SETVERB(.DELIMCHARS.)
	i137.15.113 SETVERB(.WRAP.)
	i137.15.114 SETVERB(.MESSAGE.)
	i137.15.115 SETVERB(.MCENTER.)
	i137.15.116 STRADDEXTENTION()
	i137.15.117 STRCUTEXTENTION()
	i137.15.118 STRDRIVE()
	i137.15.119 STREXTENTION()
	i137.15.120 STRFILE()
	i137.15.121 STRFILEFIND()
	i137.15.122 STRGETLEN()
	i137.15.123 STRLISTASARRAY()
	i137.15.124 STROCCURS()
	i137.15.125 STRPARENT()
	i137.15.126 STRPATH()
	i137.15.127 STRTEMPPATH()
	i137.15.128 STRXTOSTRING()
	i137.15.129 TB()
	i137.15.130 TEXT()
	i137.15.131 TGLINSERT()
	i137.15.132 TIMEX2N()
	i137.15.133 TIMEN2H()
	i137.15.134 TIMEN2M()
	i137.15.135 TIMEN2S()
	i137.15.136 TRUESETKEY()
	i137.15.137 WAITFILEEVAL()
	i137.15.138 WAITFOR()
	i137.15.139 WAITPROGRESS()

	u2.16 Normal command substitution
	u2.17 nB command substitution functions
	u2.18 RPT: the nB print function
	i137.18.1 Memvars and fields
	i137.18.2 Commands
	i137.18.3 Examples

	u2.19 How can I...
	u2.20 The source files

